Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L.

Identification of candidate genes underlying genic male-sterile msc-1 locus via genome... Key message Based on genome resequencing, a strong candidate gene Capana02g002096 was identified in this study. Capana02g002096 encodes a homolog of AtDYT1 which is a bHLH transcription factor and involves in the early tapetal development. Abstract Genic male-sterile line is an efficient tool for commercial hybrid seed production in pepper; however, so far, only few genes controlling this trait have been cloned. A spontaneous genic male-sterile mutant, msc-1, had been identified and widely used in China, of which the male-sterile trait was proved to be controlled by a single recessive locus. For cloning the gene(s) underlying the msc-1 locus, genome resequencing and comparison analyses were performed between male-sterile and male-fertile lines. According to the genomic variations and genes’ annotations, Capana02g002096 was selected as a candidate gene underlying the msc-1 locus. Capana02g002096 encodes a homolog of AtDYT1, which is a bHLH transcription factor and involves in the early tapetal development. Moreover, a 7-bp deletion was identified in the exon of Capana02g002096, which led to a premature stop codon and may cause a loss-of-function mutation. Further genotyping in the 16C1369AB population containing 1110 plants, a F population consisting of 510 plants and 46 inbreed lines revealed that the male-sterile phenotype was http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png TAG Theoretical and Applied Genetics Springer Journals

Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L.

Loading next page...
 
/lp/springer_journal/identification-of-candidate-genes-underlying-genic-male-sterile-msc-1-4ejxyuE6x0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Plant Breeding/Biotechnology; Plant Genetics and Genomics; Agriculture; Plant Biochemistry; Biochemistry, general; Biotechnology
ISSN
0040-5752
eISSN
1432-2242
D.O.I.
10.1007/s00122-018-3119-1
Publisher site
See Article on Publisher Site

Abstract

Key message Based on genome resequencing, a strong candidate gene Capana02g002096 was identified in this study. Capana02g002096 encodes a homolog of AtDYT1 which is a bHLH transcription factor and involves in the early tapetal development. Abstract Genic male-sterile line is an efficient tool for commercial hybrid seed production in pepper; however, so far, only few genes controlling this trait have been cloned. A spontaneous genic male-sterile mutant, msc-1, had been identified and widely used in China, of which the male-sterile trait was proved to be controlled by a single recessive locus. For cloning the gene(s) underlying the msc-1 locus, genome resequencing and comparison analyses were performed between male-sterile and male-fertile lines. According to the genomic variations and genes’ annotations, Capana02g002096 was selected as a candidate gene underlying the msc-1 locus. Capana02g002096 encodes a homolog of AtDYT1, which is a bHLH transcription factor and involves in the early tapetal development. Moreover, a 7-bp deletion was identified in the exon of Capana02g002096, which led to a premature stop codon and may cause a loss-of-function mutation. Further genotyping in the 16C1369AB population containing 1110 plants, a F population consisting of 510 plants and 46 inbreed lines revealed that the male-sterile phenotype was

Journal

TAG Theoretical and Applied GeneticsSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off