Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Identification of candidate genes of autism on the basis of molecular cytogenetic and in silico studies of the genome organization of chromosomal regions involved in unbalanced rearrangements

Identification of candidate genes of autism on the basis of molecular cytogenetic and in silico... Autism is one of the most widely spread mental diseases among children. Different genetic anomalies make a considerable contribution to the etiology of this disease; therefore, the identification of candidate genes of autism can be regarded as a topical task of modern medical genetics. The molecular cytogenetic examination of children with autism was carried out using high-resolution comparative genome hybridization and subsequent in silico analysis of chromosomal regions involved in unbalanced rearrangements. Five of 126 (4%) children with autism had unbalanced rearrangements of chromosomes 5, 17, 21 (deletions) and chromosomes 4 and 22 (duplications). The following candidate genes were identified in children with autism by in silico analysis: SCARB2, TPPP, PDCD6, SEPT5, GP1BB, PI4KA, NPTX1, STCH, NRIP1, and CXADR. These methods also allowed us to find a possible association between gene clusterization and the formation of the described chromosomal rearrangements. Thus, this study demonstrates that the molecular cytogenetic and bioinformatic methods can be successfully used to search for candidate genes of different diseases and analyze the genome organization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Identification of candidate genes of autism on the basis of molecular cytogenetic and in silico studies of the genome organization of chromosomal regions involved in unbalanced rearrangements

Loading next page...
1
 
/lp/springer_journal/identification-of-candidate-genes-of-autism-on-the-basis-of-molecular-tvAsannbaJ

References (22)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
DOI
10.1134/S102279541010011X
Publisher site
See Article on Publisher Site

Abstract

Autism is one of the most widely spread mental diseases among children. Different genetic anomalies make a considerable contribution to the etiology of this disease; therefore, the identification of candidate genes of autism can be regarded as a topical task of modern medical genetics. The molecular cytogenetic examination of children with autism was carried out using high-resolution comparative genome hybridization and subsequent in silico analysis of chromosomal regions involved in unbalanced rearrangements. Five of 126 (4%) children with autism had unbalanced rearrangements of chromosomes 5, 17, 21 (deletions) and chromosomes 4 and 22 (duplications). The following candidate genes were identified in children with autism by in silico analysis: SCARB2, TPPP, PDCD6, SEPT5, GP1BB, PI4KA, NPTX1, STCH, NRIP1, and CXADR. These methods also allowed us to find a possible association between gene clusterization and the formation of the described chromosomal rearrangements. Thus, this study demonstrates that the molecular cytogenetic and bioinformatic methods can be successfully used to search for candidate genes of different diseases and analyze the genome organization.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 13, 2010

There are no references for this article.