Identification of candidate genes of autism on the basis of molecular cytogenetic and in silico studies of the genome organization of chromosomal regions involved in unbalanced rearrangements

Identification of candidate genes of autism on the basis of molecular cytogenetic and in silico... Autism is one of the most widely spread mental diseases among children. Different genetic anomalies make a considerable contribution to the etiology of this disease; therefore, the identification of candidate genes of autism can be regarded as a topical task of modern medical genetics. The molecular cytogenetic examination of children with autism was carried out using high-resolution comparative genome hybridization and subsequent in silico analysis of chromosomal regions involved in unbalanced rearrangements. Five of 126 (4%) children with autism had unbalanced rearrangements of chromosomes 5, 17, 21 (deletions) and chromosomes 4 and 22 (duplications). The following candidate genes were identified in children with autism by in silico analysis: SCARB2, TPPP, PDCD6, SEPT5, GP1BB, PI4KA, NPTX1, STCH, NRIP1, and CXADR. These methods also allowed us to find a possible association between gene clusterization and the formation of the described chromosomal rearrangements. Thus, this study demonstrates that the molecular cytogenetic and bioinformatic methods can be successfully used to search for candidate genes of different diseases and analyze the genome organization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Identification of candidate genes of autism on the basis of molecular cytogenetic and in silico studies of the genome organization of chromosomal regions involved in unbalanced rearrangements

Loading next page...
 
/lp/springer_journal/identification-of-candidate-genes-of-autism-on-the-basis-of-molecular-tvAsannbaJ
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S102279541010011X
Publisher site
See Article on Publisher Site

Abstract

Autism is one of the most widely spread mental diseases among children. Different genetic anomalies make a considerable contribution to the etiology of this disease; therefore, the identification of candidate genes of autism can be regarded as a topical task of modern medical genetics. The molecular cytogenetic examination of children with autism was carried out using high-resolution comparative genome hybridization and subsequent in silico analysis of chromosomal regions involved in unbalanced rearrangements. Five of 126 (4%) children with autism had unbalanced rearrangements of chromosomes 5, 17, 21 (deletions) and chromosomes 4 and 22 (duplications). The following candidate genes were identified in children with autism by in silico analysis: SCARB2, TPPP, PDCD6, SEPT5, GP1BB, PI4KA, NPTX1, STCH, NRIP1, and CXADR. These methods also allowed us to find a possible association between gene clusterization and the formation of the described chromosomal rearrangements. Thus, this study demonstrates that the molecular cytogenetic and bioinformatic methods can be successfully used to search for candidate genes of different diseases and analyze the genome organization.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 13, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off