Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana

Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana The tRNA of most organisms contain modified adenines called cytokinins. Situated next to the anticodon, they have been shown to influence translational fidelity and efficiency. The enzyme that synthesizes cytokinins on pre-tRNA, tRNA isopentenyltransferase (EC 2.5.1.8), has been studied in micro-organisms like Escherichia coli and Saccharomyces cerevisiae, and the corresponding genes have been cloned. We here report the first cloning and functional characterization of a homologous gene from a plant, Arabidopsis thaliana. Expression in S. cerevisiae showed that the gene can complement the anti-suppressor phenotype of a mutant that lacks MOD5, the intrinsic tRNA isopentenyltransferase gene. This was accompanied by the reintroduction of isopentenyladenosine in the tRNA. The Arabidopsis gene is constitutively expressed in seedling tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/identification-of-a-trna-isopentenyltransferase-gene-from-arabidopsis-QMm0OZbmf0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014958816241
Publisher site
See Article on Publisher Site

Abstract

The tRNA of most organisms contain modified adenines called cytokinins. Situated next to the anticodon, they have been shown to influence translational fidelity and efficiency. The enzyme that synthesizes cytokinins on pre-tRNA, tRNA isopentenyltransferase (EC 2.5.1.8), has been studied in micro-organisms like Escherichia coli and Saccharomyces cerevisiae, and the corresponding genes have been cloned. We here report the first cloning and functional characterization of a homologous gene from a plant, Arabidopsis thaliana. Expression in S. cerevisiae showed that the gene can complement the anti-suppressor phenotype of a mutant that lacks MOD5, the intrinsic tRNA isopentenyltransferase gene. This was accompanied by the reintroduction of isopentenyladenosine in the tRNA. The Arabidopsis gene is constitutively expressed in seedling tissues.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off