Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis

Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex... Salt is a major environmental stress factor that can affect rice growth and yields. Recent studies suggested that members of the AP2/ERF domain-containing RAV (related to ABI3/VP1) TF family are involved in abiotic stress adaptation. However, the transcriptional response of rice RAV genes (OsRAVs) to salt has not yet been fully characterized. In this study, the expression patterns of all five OsRAVs were examined under salt stress. Only one gene, OsRAV2, was stably induced by high-salinity treatment. Further expression profile analyses indicated that OsRAV2 is transcriptionally regulated by salt, but not KCl, osmotic stress, cold or ABA (abscisic acid) treatment. To elucidate the regulatory mechanism of the stress response at the transcriptional level, we isolated and characterized the promoter region of OsRAV2 (P OsRAV2 ). Transgenic analysis indicated that P OsRAV2 is induced by salt stress but not osmotic stress or ABA treatment. Serial 5′ deletions and site-specific mutations in P OsRAV2 revealed that a GT-1 element located at position −664 relative to the putative translation start site is essential for the salt induction of P OsRAV2 . The regulatory function of the GT-1 element in the salt induction of OsRAV2 was verified in situ in plants with targeted mutations generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system. Taken together, our results indicate that the GT-1 element directly controls the salt response of OsRAV2. This study provides a better understanding of the putative functions of OsRAVs and the molecular regulatory mechanisms of plant genes under salt stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis

Loading next page...
 
/lp/springer_journal/identification-of-a-regulatory-element-responsible-for-salt-induction-nL0MlJsRfV
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-015-0393-z
Publisher site
See Article on Publisher Site

Abstract

Salt is a major environmental stress factor that can affect rice growth and yields. Recent studies suggested that members of the AP2/ERF domain-containing RAV (related to ABI3/VP1) TF family are involved in abiotic stress adaptation. However, the transcriptional response of rice RAV genes (OsRAVs) to salt has not yet been fully characterized. In this study, the expression patterns of all five OsRAVs were examined under salt stress. Only one gene, OsRAV2, was stably induced by high-salinity treatment. Further expression profile analyses indicated that OsRAV2 is transcriptionally regulated by salt, but not KCl, osmotic stress, cold or ABA (abscisic acid) treatment. To elucidate the regulatory mechanism of the stress response at the transcriptional level, we isolated and characterized the promoter region of OsRAV2 (P OsRAV2 ). Transgenic analysis indicated that P OsRAV2 is induced by salt stress but not osmotic stress or ABA treatment. Serial 5′ deletions and site-specific mutations in P OsRAV2 revealed that a GT-1 element located at position −664 relative to the putative translation start site is essential for the salt induction of P OsRAV2 . The regulatory function of the GT-1 element in the salt induction of OsRAV2 was verified in situ in plants with targeted mutations generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system. Taken together, our results indicate that the GT-1 element directly controls the salt response of OsRAV2. This study provides a better understanding of the putative functions of OsRAVs and the molecular regulatory mechanisms of plant genes under salt stress.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off