Identification of a region of the Arabidopsis AtAOX1a promoter necessary for mitochondrial retrograde regulation of expression

Identification of a region of the Arabidopsis AtAOX1a promoter necessary for mitochondrial... Chemical inhibition of the mitochondrial electron transport chain (mtETC) by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA) causes increased expression of nucleus-encoded alternative oxidase (AOX) genes in plants. In order to better understand the mechanisms of this mitochondrial retrograde regulation (MRR) of gene expression, constructs containing deleted and mutated versions of a promoter region of the Arabidopsis thaliana AOX1a gene (AtAOX1a) controlling expression of the coding region of the enhanced firefly luciferase gene were employed to identify regions of the AtAOX1a promoter important for induction in response to mtETC or TCA cycle inhibition. Transient transformation coupled with in vitro and in vivo assays as well as plants containing transgenes with truncated promoter regions were used to identify a 93 base pair portion of the promoter, termed the MRR region, that was necessary for induction. Further mutational analyses showed that most of the 93 bp MRR region is important for both AA and MFA induction. Sub-regions within the MRR region that are especially important for strong induction by both AA or MFA were identified. Specific mutations in a W-box and Dof motifs in the MRR region indicate that these specific motifs are not important for induction. Recent evidence suggests that MRR of AOX genes following inhibition of the mtETC is via a separate signaling pathway from MRR resulting from metabolic shifts, such as those that result from MFA treatment. Our data suggest that these signaling pathways share regulatory regions in the AtAOX1a promoter. Arabidopsis proteins interacted specifically with a probe containing the MRR region, as shown by electrophoretic mobility shift assays and Southwestern blotting. These interactions were eliminated under reducing conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of a region of the Arabidopsis AtAOX1a promoter necessary for mitochondrial retrograde regulation of expression

Loading next page...
 
/lp/springer_journal/identification-of-a-region-of-the-arabidopsis-ataox1a-promoter-oRfoXKb53O
Publisher
Springer Netherlands
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5390-1
Publisher site
See Article on Publisher Site

Abstract

Chemical inhibition of the mitochondrial electron transport chain (mtETC) by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA) causes increased expression of nucleus-encoded alternative oxidase (AOX) genes in plants. In order to better understand the mechanisms of this mitochondrial retrograde regulation (MRR) of gene expression, constructs containing deleted and mutated versions of a promoter region of the Arabidopsis thaliana AOX1a gene (AtAOX1a) controlling expression of the coding region of the enhanced firefly luciferase gene were employed to identify regions of the AtAOX1a promoter important for induction in response to mtETC or TCA cycle inhibition. Transient transformation coupled with in vitro and in vivo assays as well as plants containing transgenes with truncated promoter regions were used to identify a 93 base pair portion of the promoter, termed the MRR region, that was necessary for induction. Further mutational analyses showed that most of the 93 bp MRR region is important for both AA and MFA induction. Sub-regions within the MRR region that are especially important for strong induction by both AA or MFA were identified. Specific mutations in a W-box and Dof motifs in the MRR region indicate that these specific motifs are not important for induction. Recent evidence suggests that MRR of AOX genes following inhibition of the mtETC is via a separate signaling pathway from MRR resulting from metabolic shifts, such as those that result from MFA treatment. Our data suggest that these signaling pathways share regulatory regions in the AtAOX1a promoter. Arabidopsis proteins interacted specifically with a probe containing the MRR region, as shown by electrophoretic mobility shift assays and Southwestern blotting. These interactions were eliminated under reducing conditions.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 23, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off