Identification of a purine-rich intronic enhancer element in the mouse eosinophil-associated ribonuclease 2 (mEar 2) gene

Identification of a purine-rich intronic enhancer element in the mouse eosinophil-associated... The Mus musculus eosinophil-associated ribonuclease (mEar) gene cluster includes multiple distinct coding sequences that are highly divergent orthologs of the human eosinophil ribonucleases, eosinophil-derived neurotoxin (EDN/RNase 2) and eosinophil cationic protein (ECP/RNase 3). We present a transcriptional analysis of the gene encoding mEar 2, the only member of this cluster with a well-defined expression profile. In this work, we demonstrate that the presence of non-coding exon 1 and the intron in tandem with a 361-bp 5′ promoter of mEar 2 results in enhanced reporter gene expression, as much as 6- to 10-fold over the activity observed with the 5′ promoter alone. We have identified a conserved purine-rich element in the intron of the mEar 2 gene that is necessary for maximum transcription and that interacts specifically with NFAT-binding proteins in nuclear extracts derived from the mouse LA4 epithelial cell line. Similar intronic enhancers have been described as regulating transcription of the human EDN gene, suggesting an overall conservation of an important regulatory strategy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Identification of a purine-rich intronic enhancer element in the mouse eosinophil-associated ribonuclease 2 (mEar 2) gene

Loading next page...
 
/lp/springer_journal/identification-of-a-purine-rich-intronic-enhancer-element-in-the-mouse-f4zIbKA2Q3
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-003-2304-x
Publisher site
See Article on Publisher Site

Abstract

The Mus musculus eosinophil-associated ribonuclease (mEar) gene cluster includes multiple distinct coding sequences that are highly divergent orthologs of the human eosinophil ribonucleases, eosinophil-derived neurotoxin (EDN/RNase 2) and eosinophil cationic protein (ECP/RNase 3). We present a transcriptional analysis of the gene encoding mEar 2, the only member of this cluster with a well-defined expression profile. In this work, we demonstrate that the presence of non-coding exon 1 and the intron in tandem with a 361-bp 5′ promoter of mEar 2 results in enhanced reporter gene expression, as much as 6- to 10-fold over the activity observed with the 5′ promoter alone. We have identified a conserved purine-rich element in the intron of the mEar 2 gene that is necessary for maximum transcription and that interacts specifically with NFAT-binding proteins in nuclear extracts derived from the mouse LA4 epithelial cell line. Similar intronic enhancers have been described as regulating transcription of the human EDN gene, suggesting an overall conservation of an important regulatory strategy.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off