Identification of a novel putative inhibitor of the Plasmodium falciparum purine nucleoside phosphorylase: exploring the purine salvage pathway to design new antimalarial drugs

Identification of a novel putative inhibitor of the Plasmodium falciparum purine nucleoside... Malaria, a tropical parasitic disease caused by Plasmodium spp., continues to place a heavy social burden, with almost 200 million cases and more than 580,000 deaths per year. Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) can be targeted for antimalarial drug design since its inhibition kills malaria parasites both in vitro and in vivo. Although the currently known inhibitors of PfPNP, immucillins, are orally available and of low toxicity to animals and humans, to the best of our knowledge, none of these compounds has entered clinical trials for the treatment of malaria. Using a pharmacophore-based virtual screening coupled to a consensual molecular docking approach, we identified 59 potential PfPNP inhibitors that are predicted to be orally absorbed in a Caco-2 cell model. Although most of these compounds are predicted to have high plasma protein binding levels, poor water solubility (except for compound 25) and CYP3A4 metabolic stability (except for 4, 7 and 8), four structures (4, 7, 8 and 25) remain as potential leads because of their plausible interaction with a specific hydrophobic pocket of PfPNP, which would confer them higher selectivity for PfPNP over human PNP. Additionally, both predicted Gibbs free energies for binding and molecular dynamics suggest that compound 4 may form a more stable complex with PfPNP than 5 $$^{\prime }$$ ′ -methylthio-immucillin-H, a potent and selective inhibitor of PfPNP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Diversity Springer Journals

Identification of a novel putative inhibitor of the Plasmodium falciparum purine nucleoside phosphorylase: exploring the purine salvage pathway to design new antimalarial drugs

Loading next page...
 
/lp/springer_journal/identification-of-a-novel-putative-inhibitor-of-the-plasmodium-l4a30lgzfc
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Life Sciences; Biochemistry, general; Organic Chemistry; Polymer Sciences; Pharmacy
ISSN
1381-1991
eISSN
1573-501X
D.O.I.
10.1007/s11030-017-9745-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial