Identification of a linear epitope on the haemagglutinin protein of pandemic A/H1N1 2009 influenza virus using monoclonal antibodies

Identification of a linear epitope on the haemagglutinin protein of pandemic A/H1N1 2009... A novel influenza A/H1N1 virus, emerging from Mexico and the United States in the spring of 2009, caused the pandemic human infection of 2009-2010. The haemagglutinin (HA) glycoprotein is the major surface antigen of influenza A virus and plays an important role in viral infection. In this study, three hybridoma cell lines secreting specific monoclonal antibodies (Mabs) against the HA protein of pandemic influenza A/H1N1 2009 virus were generated with the recombinant plasmid pCAGGS-HA as an immunogen. Using Pepscan analysis, the binding sites of these Mabs were identified in a linear region of the HA protein. Further, refined mapping was conducted using truncated peptides expressed as GST-fusion proteins in E. coli . We found that the 250 VPRYA 254 motif was the minimal determinant of the linear epitope that could be recognized by the Mabs. Alignment with sequences from the databases showed that the amino acid residues of this epitope were highly conserved among all pandemic A/H1N1 2009 viruses as well as the classical swine H1N1 viruses isolated to date. These results provide additional insights into the antigenic structure of the HA protein and virus-antibody interactions at the amino acid level, which may assist in the development of specific diagnostic methods for influenza viruses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Identification of a linear epitope on the haemagglutinin protein of pandemic A/H1N1 2009 influenza virus using monoclonal antibodies

Loading next page...
 
/lp/springer_journal/identification-of-a-linear-epitope-on-the-haemagglutinin-protein-of-CbSEBTeGgc
Publisher
Springer Vienna
Copyright
Copyright © 2014 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-013-1955-5
Publisher site
See Article on Publisher Site

Abstract

A novel influenza A/H1N1 virus, emerging from Mexico and the United States in the spring of 2009, caused the pandemic human infection of 2009-2010. The haemagglutinin (HA) glycoprotein is the major surface antigen of influenza A virus and plays an important role in viral infection. In this study, three hybridoma cell lines secreting specific monoclonal antibodies (Mabs) against the HA protein of pandemic influenza A/H1N1 2009 virus were generated with the recombinant plasmid pCAGGS-HA as an immunogen. Using Pepscan analysis, the binding sites of these Mabs were identified in a linear region of the HA protein. Further, refined mapping was conducted using truncated peptides expressed as GST-fusion proteins in E. coli . We found that the 250 VPRYA 254 motif was the minimal determinant of the linear epitope that could be recognized by the Mabs. Alignment with sequences from the databases showed that the amino acid residues of this epitope were highly conserved among all pandemic A/H1N1 2009 viruses as well as the classical swine H1N1 viruses isolated to date. These results provide additional insights into the antigenic structure of the HA protein and virus-antibody interactions at the amino acid level, which may assist in the development of specific diagnostic methods for influenza viruses.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off