Identification of a Glycosylphosphatidylinositol-anchored Plasma Membrane Protein Interacting with the C-terminus of Auxin-binding Protein 1: A Photoaffinity Crosslinking Study

Identification of a Glycosylphosphatidylinositol-anchored Plasma Membrane Protein Interacting... Synthetic peptides corresponding to the C-terminus of auxin-binding protein 1 (ABP1) have been shown to function as auxin agonists. To define a C-terminal receptor, photoaffinity crosslinking experiments were performed using an azido derivative of a C-terminal peptide and plasma membranes from maize (Zea mays L.). The crosslinking reaction was monitored by immunoblotting using anti-ABP1 antibodies. The crosslinked proteins were isolated by 2D gel electrophoresis and identified by mass spectrometric analysis. Further, the noncrosslinked forms of these proteins were also identified. Two proteins with apparent molecular masses of 73 kDa (termed C-terminal peptide-binding protein 1, CBP1) and 35 kDa (CBP2) were specifically linked with the C-terminal peptide. CBP2 is a cytoplasmic protein that consists of two conserved domains that are characteristic of a ricin-type lectin domain. CBP2 remained in the detergent-insoluble particles and was released from the particles by the addition of monosaccharides such as methyl-β-d-galactopyranoside. CBP1 was released from the membranes by treatment with phosphatidylinositol-specific phospholipase C, indicating that CBP1 is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein. CBP1 was found to be a copper-binding protein, and is highly homologous to Arabidopsis thaliana SKU5 that contributes to directional root growth processes. Further, it is similar to A. thaliana SKS6 that contributes to cotyledon vascular patterning and to Nicotiana tabacum NTP303 that contributes to pollen tube growth. The present results indicate that ABP1 may contribute to directional cell growth processes via the GPI-anchored plasma membrane protein SKU5 and its family members. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of a Glycosylphosphatidylinositol-anchored Plasma Membrane Protein Interacting with the C-terminus of Auxin-binding Protein 1: A Photoaffinity Crosslinking Study

Loading next page...
 
/lp/springer_journal/identification-of-a-glycosylphosphatidylinositol-anchored-plasma-miQ3GqDiUj
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5471-1
Publisher site
See Article on Publisher Site

Abstract

Synthetic peptides corresponding to the C-terminus of auxin-binding protein 1 (ABP1) have been shown to function as auxin agonists. To define a C-terminal receptor, photoaffinity crosslinking experiments were performed using an azido derivative of a C-terminal peptide and plasma membranes from maize (Zea mays L.). The crosslinking reaction was monitored by immunoblotting using anti-ABP1 antibodies. The crosslinked proteins were isolated by 2D gel electrophoresis and identified by mass spectrometric analysis. Further, the noncrosslinked forms of these proteins were also identified. Two proteins with apparent molecular masses of 73 kDa (termed C-terminal peptide-binding protein 1, CBP1) and 35 kDa (CBP2) were specifically linked with the C-terminal peptide. CBP2 is a cytoplasmic protein that consists of two conserved domains that are characteristic of a ricin-type lectin domain. CBP2 remained in the detergent-insoluble particles and was released from the particles by the addition of monosaccharides such as methyl-β-d-galactopyranoside. CBP1 was released from the membranes by treatment with phosphatidylinositol-specific phospholipase C, indicating that CBP1 is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein. CBP1 was found to be a copper-binding protein, and is highly homologous to Arabidopsis thaliana SKU5 that contributes to directional root growth processes. Further, it is similar to A. thaliana SKS6 that contributes to cotyledon vascular patterning and to Nicotiana tabacum NTP303 that contributes to pollen tube growth. The present results indicate that ABP1 may contribute to directional cell growth processes via the GPI-anchored plasma membrane protein SKU5 and its family members.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 28, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off