Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals

Identification of a feature selection based pattern recognition scheme for finger movement... This paper focuses on identification of an effective pattern recognition scheme with the least number of time domain features for dexterous control of prosthetic hand to recognize the various finger movements from surface electromyogram (EMG) signals. Eight channels EMG from 8 able-bodied subjects for 15 individuals and combined finger activities have been considered in this work. In this work, an attempt has been made to recognize a number of classes with the least number of features. Therefore, EMG signals are pre-processed using dual tree complex wavelet transform to improve the discriminating capability of features and time domain features such as zero crossing, slope sign change, mean absolute value, and waveform length is extracted from the pre-processed data. The performance of extracted features is studied with different classifiers such as linear discriminant analysis, naive Bayes classifier, quadratic support vector machine and cubic support vector machine with and without feature selection algorithms. The feature selection has been studied using particle swarm optimization (PSO) and ant colony optimization (ACO) with different number of features to identify the effect of features. The results demonstrated that naive Bayes classifier with ant colony optimization shows an average classification accuracy of 88.89% with a response time of 0.058025 ms for recognizing the 15 different finger movements with 16 features with significant difference in accuracy compared to SVM classifier with feature selection for a significance level of 0.05. There is no significant difference in the accuracy, specificity and sensitivity of an SVM classifier with and without feature selection. But the processing time is significantly more than the LDA and NB classifier. The PSO and ACO results revealed that slope sign changes contribute to recognizing the activity. In PSO, mean absolute value has been found to be effective compared to waveform length, contradictory with ACO. Further, the zero crossings have been found to be not effective in classification of finger movements in both the methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australasian Physical & Engineering Sciences in Medicine Springer Journals

Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals

Loading next page...
 
/lp/springer_journal/identification-of-a-feature-selection-based-pattern-recognition-scheme-lZxaGHXaNJ
Publisher
Springer Journals
Copyright
Copyright © 2018 by Australasian College of Physical Scientists and Engineers in Medicine
Subject
Biomedicine; Biomedicine, general; Biological and Medical Physics, Biophysics; Medical and Radiation Physics; Biomedical Engineering
ISSN
0158-9938
eISSN
1879-5447
D.O.I.
10.1007/s13246-018-0646-7
Publisher site
See Article on Publisher Site

Abstract

This paper focuses on identification of an effective pattern recognition scheme with the least number of time domain features for dexterous control of prosthetic hand to recognize the various finger movements from surface electromyogram (EMG) signals. Eight channels EMG from 8 able-bodied subjects for 15 individuals and combined finger activities have been considered in this work. In this work, an attempt has been made to recognize a number of classes with the least number of features. Therefore, EMG signals are pre-processed using dual tree complex wavelet transform to improve the discriminating capability of features and time domain features such as zero crossing, slope sign change, mean absolute value, and waveform length is extracted from the pre-processed data. The performance of extracted features is studied with different classifiers such as linear discriminant analysis, naive Bayes classifier, quadratic support vector machine and cubic support vector machine with and without feature selection algorithms. The feature selection has been studied using particle swarm optimization (PSO) and ant colony optimization (ACO) with different number of features to identify the effect of features. The results demonstrated that naive Bayes classifier with ant colony optimization shows an average classification accuracy of 88.89% with a response time of 0.058025 ms for recognizing the 15 different finger movements with 16 features with significant difference in accuracy compared to SVM classifier with feature selection for a significance level of 0.05. There is no significant difference in the accuracy, specificity and sensitivity of an SVM classifier with and without feature selection. But the processing time is significantly more than the LDA and NB classifier. The PSO and ACO results revealed that slope sign changes contribute to recognizing the activity. In PSO, mean absolute value has been found to be effective compared to waveform length, contradictory with ACO. Further, the zero crossings have been found to be not effective in classification of finger movements in both the methods.

Journal

Australasian Physical & Engineering Sciences in MedicineSpringer Journals

Published: May 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off