Identification of a Discontinuous Parameter in Stochastic Parabolic Systems

Identification of a Discontinuous Parameter in Stochastic Parabolic Systems The purpose of this paper is to study the identification problem for a spatially varying discontinuous parameter in stochastic diffusion equations. The consistency property of the maximum likelihood estimate (M.L.E.) and a generating algorithm for M.L.E. have been explored under the condition that the unknown parameter is in a sufficiently regular space with respect to spatial variables. In order to prove the consistency property of the M.L.E. for a discontinuous diffusion coefficient, we use the method of sieves, i.e., first the admissible class of unknown parameters is projected into a finite-dimensional space and next the convergence of the derived finite-dimensional M.L.E. to the infinite-dimensional M.L.E. is justified under some conditions. An iterative algorithm for generating the M.L.E. is also proposed with two numerical examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Identification of a Discontinuous Parameter in Stochastic Parabolic Systems

Loading next page...
 
/lp/springer_journal/identification-of-a-discontinuous-parameter-in-stochastic-parabolic-N0pio2Qo0V
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s002459900068
Publisher site
See Article on Publisher Site

Abstract

The purpose of this paper is to study the identification problem for a spatially varying discontinuous parameter in stochastic diffusion equations. The consistency property of the maximum likelihood estimate (M.L.E.) and a generating algorithm for M.L.E. have been explored under the condition that the unknown parameter is in a sufficiently regular space with respect to spatial variables. In order to prove the consistency property of the M.L.E. for a discontinuous diffusion coefficient, we use the method of sieves, i.e., first the admissible class of unknown parameters is projected into a finite-dimensional space and next the convergence of the derived finite-dimensional M.L.E. to the infinite-dimensional M.L.E. is justified under some conditions. An iterative algorithm for generating the M.L.E. is also proposed with two numerical examples.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Jun 1, 2006

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off