Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Identification of a canonical SCFSLF complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae)

Identification of a canonical SCFSLF complex involved in S-RNase-based self-incompatibility of... S-RNase-based self-incompatibility (SI) is an intraspecific reproductive barrier to prevent self-fertilization found in many species of the Solanaceae, Plantaginaceae and Rosaceae. In this system, S-RNase and SLF/SFB (S-locus F-box) genes have been shown to control the pistil and pollen SI specificity, respectively. Recent studies have shown that the SLF functions as a substrate receptor of a SCF (Skp1/Cullin1/F-box)-type E3 ubiquitin ligase complex to target S-RNases in Solanaceae and Plantaginaceae, but its role in Rosaceae remains largely undefined. Here we report the identification of two pollen-specific SLF-interacting Skp1-like (SSK) proteins, PbSSK1 and PbSSK2, in Pyrus bretschneideri from the tribe Pyreae of Rosaceae. Both yeast two-hybrid and pull-down assays demonstrated that they could connect PbSLFs to PbCUL1 to form a putative canonical SCFSLF (SSK/CUL1/SLF) complex in Pyrus. Furthermore, pull-down assays showed that the SSK proteins could bind SLF and CUL1 in a cross-species manner between Pyrus and Petunia. Additionally, phylogenetic analysis revealed that the SSK-like proteins from Solanaceae, Plantaginaceae and Rosaceae form a monoclade group, hinting their shared evolutionary origin. Taken together, with the recent identification of a canonical SCFSFB complex in Prunus of the tribe Amygdaleae of Rosaceae, our results show that a conserved canonical SCFSLF/SFB complex is present in Solanaceae, Plantaginaceae and Rosaceae, implying that S-RNase-based self-incompatibility shares a similar molecular and biochemical mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of a canonical SCFSLF complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae)

Loading next page...
1
 
/lp/springer_journal/identification-of-a-canonical-scfslf-complex-involved-in-s-rnase-based-Gj8ZK2m7UW

References (59)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-012-9995-x
pmid
23263858
Publisher site
See Article on Publisher Site

Abstract

S-RNase-based self-incompatibility (SI) is an intraspecific reproductive barrier to prevent self-fertilization found in many species of the Solanaceae, Plantaginaceae and Rosaceae. In this system, S-RNase and SLF/SFB (S-locus F-box) genes have been shown to control the pistil and pollen SI specificity, respectively. Recent studies have shown that the SLF functions as a substrate receptor of a SCF (Skp1/Cullin1/F-box)-type E3 ubiquitin ligase complex to target S-RNases in Solanaceae and Plantaginaceae, but its role in Rosaceae remains largely undefined. Here we report the identification of two pollen-specific SLF-interacting Skp1-like (SSK) proteins, PbSSK1 and PbSSK2, in Pyrus bretschneideri from the tribe Pyreae of Rosaceae. Both yeast two-hybrid and pull-down assays demonstrated that they could connect PbSLFs to PbCUL1 to form a putative canonical SCFSLF (SSK/CUL1/SLF) complex in Pyrus. Furthermore, pull-down assays showed that the SSK proteins could bind SLF and CUL1 in a cross-species manner between Pyrus and Petunia. Additionally, phylogenetic analysis revealed that the SSK-like proteins from Solanaceae, Plantaginaceae and Rosaceae form a monoclade group, hinting their shared evolutionary origin. Taken together, with the recent identification of a canonical SCFSFB complex in Prunus of the tribe Amygdaleae of Rosaceae, our results show that a conserved canonical SCFSLF/SFB complex is present in Solanaceae, Plantaginaceae and Rosaceae, implying that S-RNase-based self-incompatibility shares a similar molecular and biochemical mechanism.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 20, 2012

There are no references for this article.