Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula

Identification and Characterization of Several New Members of the ZIP Family of Metal Ion... To broaden our understanding of micronutrient metal transport in plants, we have identified cDNAs for six new metal transporters in the model legume Medicago truncatula. All of the predicted proteins have high similarity to the ZIP protein family, and have been designated MtZIP1, MtZIP3, MtZIP4, MtZIP5, MtZIP6, and MtZIP7. The six predicted proteins ranged from 350 to 372 amino acids in length; sequence analysis revealed that all proteins contained eight transmembrane domains and the highly conserved ZIP signature motif. Most of the proteins also exhibited a histidine-rich region in the variable sequence between transmembrane domains III and IV. When MtZIPs were transformed into appropriate metal-uptake defective yeast mutants and grown on metal-limited media, MtZIP1, MtZIP5, and MtZIP6 proteins restored yeast growth on Zn-limited media, MtZIP4 and MtZIP7 proteins restored yeast growth on Mn-limited media, and MtZIP3, MtZIP5, and MtZIP6 proteins restored yeast growth on Fe-limited media. Therefore, we conclude that these proteins function as metal transporters in Medicago truncatula. The expression pattern for each gene was studied by semi-quantitative RT-PCR in roots and leaves from plants grown under various metal supplies. MtZIP1 transcripts were only detected in Zn-deficient roots and leaves. MtZIP3 and MtZIP4 expression was down regulated in leaves from Mn- and Fe-deficient plants and appeared to be upregulated under Zn-deficient conditions in both roots and leaves. MtZIP5 was upregulated in leaves under Zn and Mn deficiency. The expression of MtZIP6 and MtZIP7 was unaffected by the metal supply, at least in root and leaf tissues. Characterizing these proteins in a single organism will allow us to understand the interplay between various ZIP genes, and the role they play in the regulation/execution of plant metal homeostasis. Plant Molecular Biology Springer Journals

Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula

Loading next page...
Kluwer Academic Publishers
Copyright © 2004 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial