Identification and characterization of proteins that interact with the carboxy terminus of poly(A)-binding protein and inhibit translation in vitro

Identification and characterization of proteins that interact with the carboxy terminus of... Poly(A)-binding proteins (PABPs) are multifunctional proteins that play important roles in mRNA stability and protein translation. Two cucumber (Cucumis sativus L.) proteins, PCI6 (PABP-CT-interacting) and PCI243 were identified based on ability to interact with the carboxy terminus (CT) of PABP in yeast two-hybrid and in vitro binding assays. PCI6 and PCI243 share a conserved amino acid domain (SxLnpnApxFxP) in common with human PABP-CT interactors, and with Arabidopsis ERD15 (early-responsive to dehydration). Deletion analysis and point mutations indicate that presence of this domain is necessary for the interaction, and tests with ERD15 demonstrate that it is predictive of interaction. Other plant proteins possessing this domain fall into two categories: small, acidic proteins like PCI6, PCI243 and ERD15, and larger neutral proteins that also include an RNA recognition motif. PCI6 is expressed in a range of tissues, e.g., leaves, roots, stems and flowers, and follows a diurnal pattern of expression, increasing during light hours and declining overnight. In wheat germ and mouse ascites Krebs-2 in vitro translation systems, PCI6 inhibited translation whereas the non-interacting mutant, PCI6-23A, did not or had a greatly reduced effect. The activity of PCI6, therefore, is reminiscent of that of human PABP-interacting protein 2 (Paip2). These results demonstrate a novel interaction between PABP and several plant proteins sharing a SxLnpxApxFxP motif, with possible implications for translational regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification and characterization of proteins that interact with the carboxy terminus of poly(A)-binding protein and inhibit translation in vitro

Loading next page...
 
/lp/springer_journal/identification-and-characterization-of-proteins-that-interact-with-the-JI2VgO4V5n
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000028771.70969.6b
Publisher site
See Article on Publisher Site

Abstract

Poly(A)-binding proteins (PABPs) are multifunctional proteins that play important roles in mRNA stability and protein translation. Two cucumber (Cucumis sativus L.) proteins, PCI6 (PABP-CT-interacting) and PCI243 were identified based on ability to interact with the carboxy terminus (CT) of PABP in yeast two-hybrid and in vitro binding assays. PCI6 and PCI243 share a conserved amino acid domain (SxLnpnApxFxP) in common with human PABP-CT interactors, and with Arabidopsis ERD15 (early-responsive to dehydration). Deletion analysis and point mutations indicate that presence of this domain is necessary for the interaction, and tests with ERD15 demonstrate that it is predictive of interaction. Other plant proteins possessing this domain fall into two categories: small, acidic proteins like PCI6, PCI243 and ERD15, and larger neutral proteins that also include an RNA recognition motif. PCI6 is expressed in a range of tissues, e.g., leaves, roots, stems and flowers, and follows a diurnal pattern of expression, increasing during light hours and declining overnight. In wheat germ and mouse ascites Krebs-2 in vitro translation systems, PCI6 inhibited translation whereas the non-interacting mutant, PCI6-23A, did not or had a greatly reduced effect. The activity of PCI6, therefore, is reminiscent of that of human PABP-interacting protein 2 (Paip2). These results demonstrate a novel interaction between PABP and several plant proteins sharing a SxLnpxApxFxP motif, with possible implications for translational regulation.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off