Identification and characterization of genes involving the early step of Juvenile Hormone pathway in Helicoverpa armigera

Identification and characterization of genes involving the early step of Juvenile Hormone pathway... Juvenile hormones (JHs) are crucial regulators for multiple physiological processes in insects. In the current study, 10 genes in mevalonate pathway involved in JH biosynthesis were identified from Helicoverpa armigera. Tissue-specific expression analysis showed that six genes were highly expressed in the head which contained the JH biosynthetic gland (corpora allata). Temporal expression pattern showed that 10 of 12 genes were highly transcribed in the late 2nd-instar when the in vivo JH titer reached the peak, indicating a tight correlation between JH titer and the transcription of JH synthetic pathway genes. Moreover, ingestion of methoprene, a JH analogue, significantly suppressed the transcription of nine JH biosynthetic genes and caused a feedback upregulation of the JH degradation enzyme. Particularly, the Acetoacetyl CoA thiolase (HaAce) and Farnesyl diphosphate synthase gene 4 (HaFpps4) showed high transcript abundance, and their temporal expressions keep pace with JH fluctuations. Further study by RNAi showed that knockdown of HaFpps4 caused the decrease of JH titer, led to a negative effect on the transcript levels of other genes in JH pathway, and resulted in molting disturbance in larvae. Altogether, these results contribute to our understanding of JH biosynthesis in H. armigera and provide target genes for pest control based on JH-dependent regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Identification and characterization of genes involving the early step of Juvenile Hormone pathway in Helicoverpa armigera

Loading next page...
 
/lp/springer_journal/identification-and-characterization-of-genes-involving-the-early-step-o3s0l0dGuF
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16319-z
Publisher site
See Article on Publisher Site

Abstract

Juvenile hormones (JHs) are crucial regulators for multiple physiological processes in insects. In the current study, 10 genes in mevalonate pathway involved in JH biosynthesis were identified from Helicoverpa armigera. Tissue-specific expression analysis showed that six genes were highly expressed in the head which contained the JH biosynthetic gland (corpora allata). Temporal expression pattern showed that 10 of 12 genes were highly transcribed in the late 2nd-instar when the in vivo JH titer reached the peak, indicating a tight correlation between JH titer and the transcription of JH synthetic pathway genes. Moreover, ingestion of methoprene, a JH analogue, significantly suppressed the transcription of nine JH biosynthetic genes and caused a feedback upregulation of the JH degradation enzyme. Particularly, the Acetoacetyl CoA thiolase (HaAce) and Farnesyl diphosphate synthase gene 4 (HaFpps4) showed high transcript abundance, and their temporal expressions keep pace with JH fluctuations. Further study by RNAi showed that knockdown of HaFpps4 caused the decrease of JH titer, led to a negative effect on the transcript levels of other genes in JH pathway, and resulted in molting disturbance in larvae. Altogether, these results contribute to our understanding of JH biosynthesis in H. armigera and provide target genes for pest control based on JH-dependent regulation.

Journal

Scientific ReportsSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off