Identification and characterization of durum wheat microRNAs in leaf and root tissues

Identification and characterization of durum wheat microRNAs in leaf and root tissues MicroRNAs are a class of post-transcriptional regulators of plant developmental and physiological processes and responses to environmental stresses. Here, we present the study regarding the annotation and characterization of MIR genes conducted in durum wheat. We characterized the miRNAome of leaf and root tissues at tillering stage under two environmental conditions: irrigated with 100% (control) and 55% of evapotranspiration (early water stress). In total, 90 microRNAs were identified, of which 32 were classified as putative novel and species-specific miRNAs. In addition, seven microRNA homeologous groups were identified in each of the two genomes of the tetraploid durum wheat. Differential expression analysis highlighted a total of 45 microRNAs significantly differentially regulated in the pairwise comparisons leaf versus root. The miRNA families, miR530, miR395, miR393, miR5168, miR396 and miR166, miR171, miR319, and miR167, were the most expressed in leaves in comparison to roots. Putative microRNA targets were predicted for both five and three prime sequences derived from the stem-loop of the MIR gene. Gene ontology analysis showed significant overrepresented gene categories in microRNA targets belonging to transcription factors, phenylpropanoids, oxydases, and lipid binding-protein. This work represents one of the first genome wide characterization of MIR genes in durum wheat, identifying leaf and root tissue-specific microRNAs. This genomic identification of microRNAs together with the analysis of their expression profiles is a well-accepted starting point leading to a better comprehension of the role of MIR genes in the genus Triticum. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Functional & Integrative Genomics Springer Journals
Loading next page...
 
/lp/springer_journal/identification-and-characterization-of-durum-wheat-micrornas-in-leaf-1000yMg2yC
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Cell Biology; Plant Genetics and Genomics; Microbial Genetics and Genomics; Biochemistry, general; Bioinformatics; Animal Genetics and Genomics
ISSN
1438-793X
eISSN
1438-7948
D.O.I.
10.1007/s10142-017-0551-2
Publisher site
See Article on Publisher Site

Abstract

MicroRNAs are a class of post-transcriptional regulators of plant developmental and physiological processes and responses to environmental stresses. Here, we present the study regarding the annotation and characterization of MIR genes conducted in durum wheat. We characterized the miRNAome of leaf and root tissues at tillering stage under two environmental conditions: irrigated with 100% (control) and 55% of evapotranspiration (early water stress). In total, 90 microRNAs were identified, of which 32 were classified as putative novel and species-specific miRNAs. In addition, seven microRNA homeologous groups were identified in each of the two genomes of the tetraploid durum wheat. Differential expression analysis highlighted a total of 45 microRNAs significantly differentially regulated in the pairwise comparisons leaf versus root. The miRNA families, miR530, miR395, miR393, miR5168, miR396 and miR166, miR171, miR319, and miR167, were the most expressed in leaves in comparison to roots. Putative microRNA targets were predicted for both five and three prime sequences derived from the stem-loop of the MIR gene. Gene ontology analysis showed significant overrepresented gene categories in microRNA targets belonging to transcription factors, phenylpropanoids, oxydases, and lipid binding-protein. This work represents one of the first genome wide characterization of MIR genes in durum wheat, identifying leaf and root tissue-specific microRNAs. This genomic identification of microRNAs together with the analysis of their expression profiles is a well-accepted starting point leading to a better comprehension of the role of MIR genes in the genus Triticum.

Journal

Functional & Integrative GenomicsSpringer Journals

Published: Mar 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off