Identification and characterization of a heat-induced isoform of aldolase in oat chloroplast

Identification and characterization of a heat-induced isoform of aldolase in oat chloroplast An analysis of protein synthesis at elevated temperatures in oat (Avena sativa) leaves revealed a heat-induced 44 kDa polypeptide. A cDNA library of heat-treated leaves was constructed and screened with specific antibodies raised against this 44 kDa polypeptide. A clone encoding the 44 kDa protein was identified as a form of the chloroplast-localized fructose-bisphosphate aldolase (EC 4.1.2.13). Northern and western blot analyses indicated heat-induced accumulation of the chloroplast aldolase isoform at both the RNA and protein level. Heat inducibility was restricted to the chloroplastic form of the enzyme, and was not observed for the cytoplasmic aldolase. The heat-induced isoform co-purified with thykaloid fractions, as confirmed by immunoassay and activity analyses. However, when thylakoid membranes were treated with proteinase K, the aldolase isoform completely disappeared, suggesting that this enzyme is not embedded but rather tends to adhere to the chloroplast membranes. Immunoblot analysis of other plant species revealed similar heat induction of thykaloid-associated aldolase homologues, suggesting the possible existence of a universal control mechanism for this enzyme's heat tolerance http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification and characterization of a heat-induced isoform of aldolase in oat chloroplast

Loading next page...
 
/lp/springer_journal/identification-and-characterization-of-a-heat-induced-isoform-of-E9trQGxNVP
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1026528319769
Publisher site
See Article on Publisher Site

Abstract

An analysis of protein synthesis at elevated temperatures in oat (Avena sativa) leaves revealed a heat-induced 44 kDa polypeptide. A cDNA library of heat-treated leaves was constructed and screened with specific antibodies raised against this 44 kDa polypeptide. A clone encoding the 44 kDa protein was identified as a form of the chloroplast-localized fructose-bisphosphate aldolase (EC 4.1.2.13). Northern and western blot analyses indicated heat-induced accumulation of the chloroplast aldolase isoform at both the RNA and protein level. Heat inducibility was restricted to the chloroplastic form of the enzyme, and was not observed for the cytoplasmic aldolase. The heat-induced isoform co-purified with thykaloid fractions, as confirmed by immunoassay and activity analyses. However, when thylakoid membranes were treated with proteinase K, the aldolase isoform completely disappeared, suggesting that this enzyme is not embedded but rather tends to adhere to the chloroplast membranes. Immunoblot analysis of other plant species revealed similar heat induction of thykaloid-associated aldolase homologues, suggesting the possible existence of a universal control mechanism for this enzyme's heat tolerance

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off