Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis

Identical promoter elements are involved in regulation of the OPR1 gene by senescence and... Like other developmental processes, the terminal phase of leaf development, generally referred to as leaf senescence, regulates a subset of genes whose transcript abundances are increased during senescence. Jasmonic acid (JA), a plant growth regulator, also regulates the expression of subsets of genes in many aspects of plant growth and development, including leaf senescence. However, the underlying molecular mechanisms by which senescence and JA modulate gene expression are poorly understood. During an effort to isolate senescence-associated genes, we identified an Arabidopsis enhancer trap line in which the reporter gene GUS is up-regulated by both senescence and JA. The T-DNA tagged gene was subsequently cloned using thermal asymmetric interlaced PCR (TAIL-PCR). This gene encodes a 12-oxo-phytodienoic acid-10,11-reductase (OPR1). Consistent with the GUS expression data, RNA gel blot analysis showed that OPR1 was indeed up-regulated by both senescence and JA. Promoter deletion analysis and linker-scanning mutagenesis assays were employed to unveil the molecular bases of OPR1 regulation by senescence and JA. Two regulatory cis elements, namely JASE1 (5′-CGTCAATGAA-3′) and JASE2 (5′-CATACGTCGTCAA-3′), in the promoter region of the gene, were identified. While JASE2 contains a mixed A/C box-like motif, JASE1 represents a new motif without any signature sequence so far reported. Both elements were required for the up-regulation of OPR1 by leaf senescence and JA, suggesting that leaf senescence and JA may share a common molecular mechanism for modulating OPR1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis

Loading next page...
 
/lp/springer_journal/identical-promoter-elements-are-involved-in-regulation-of-the-opr1-da39KD0Pa0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1012211011538
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial