iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1)

iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information... Enzymes play pivotal roles in most of the biological reaction. The catalytic residues of an enzyme are defined as the amino acids which are directly involved in chemical catalysis; the knowledge of these residues is important for understanding enzyme function. Given an enzyme, which residues are the catalytic sites, and which residues are not? This is the first important problem for in-depth understanding the catalytic mechanism and drug development. With the explosive of protein sequences generated during the post-genomic era, it is highly desirable for both basic research and drug design to develop fast and reliable method for identifying the catalytic sites of enzymes according to their sequences. To address this problem, we proposed a new predictor, called iCataly-PseAAC. In the prediction system, the peptide sample was formulated with sequence evolution information via grey system model GM(2,1). It was observed by the rigorous jackknife test and independent dataset test that iCataly-PseAAC was superior to exist predictions though its only use sequence information. As a user-friendly web server, iCataly-PseAAC is freely accessible at http://www.jci-bioinfo.cn/iCataly-PseAAC . A step-by-step guide has been provided on how to use the web server to get the desired results for the convenience of most experimental scientists. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1)

Loading next page...
 
/lp/springer_journal/icataly-pseaac-identification-of-enzymes-catalytic-sites-using-9xA75SZQtc
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9815-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial