Hypotonic Regulation of Mouse Epithelial Sodium Channel in Xenopus laevis Oocytes

Hypotonic Regulation of Mouse Epithelial Sodium Channel in Xenopus laevis Oocytes The regulation of the epithelial Na+ channel (ENaC) during cell swelling is relevant in cellular processes in which cell volume changes occur, i.e., migration, proliferation and cell absorption. Its sensitivity to hypotonically induced swelling was investigated in the Xenopus oocyte expression system with the injection of the three subunits of mouse ENaC. We used voltage-clamp techniques to study the amiloride-sensitive Na+ currents (INa(amil)) and video microscopic methodologies to assess oocyte volume changes. Under conditions of mild swelling (25 % reduced hypotonicity) inward current amplitude decreased rapidly over 1.5 min. In contrast, there was no change in current amplitude of H2O-injected oocytes to the osmotic insult. INa(amil) kinetics analysis revealed a decrease in the slower inactivation time constant during the hypotonic stimuli. Currents from ENaC-injected oocytes were not sensitive to external Cl− reduction. Neither short- nor long-term cytochalasin D treatment affected the observed response. Oocytes expressing a DEG mutant β-ENaC subunit (β-S518K) with an open probability of 1 had reduced INa(amil) hypotonic response compared to oocytes injected with wild-type ENaC subunits. Finally, during the hypotonic response ENaC-injected oocytes did not show a cell volume difference compared with water-injected oocytes. On this basis we suggest that hypotonicity-dependent ENaC inhibition is principally mediated through an effect on open probability of channels in the membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Hypotonic Regulation of Mouse Epithelial Sodium Channel in Xenopus laevis Oocytes

Loading next page...
Springer US
Copyright © 2013 by Springer Science+Business Media New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial