Hypotonic Activation of Volume-sensitive Outwardly Rectifying Anion Channels (VSOACs) Requires Coordinated Remodeling of Subcortical and Perinuclear Actin Filaments

Hypotonic Activation of Volume-sensitive Outwardly Rectifying Anion Channels (VSOACs) Requires... Cell volume regulation requires activation of volume-sensitive outwardly rectifying anion channels (VSOACs). The actin cytoskeleton may participate in the activation of VSOACs but the roles of the two major actin pools remain undefined. We hypothesized that structural reorganization of both subcortical and perinuclear actin filaments (F-actin) contributes to the hypotonic activation of VSOACs. Hypotonic stress of pulmonary artery smooth muscle cells (PASMCs) was associated with reorganization of both peripheral and perinuclear F-actin, and with activation of VSOACs. Preincubation with cytochalasin D caused prominent dissociation of perinuclear, but not of subcortical F-actin. Cytochalasin D failed to induce isotonic activation and delayed the hypotonic activation of VSOACs. F-actin stabilization by phalloidin delayed both the hypotonic stress-induced dissociation of membrane-associated actin filaments and the activation kinetics of VSOACs. PKCε, which was proposed to phosphorylate and inhibit VSOACs, colocalized primarily with F-actin and the net kinase activity remained unchanged during hypotonic cell swelling. In conclusion, normal hypotonic activation of VSOACs requires disruption of peripheral F-actin but intact perinuclear F-actin; interference with this pattern of actin reorganization delays the activation kinetics of VSOACs. The cell swelling-induced peripheral actin dissociation may underlie the observed translocation of PKCε, which leads to a net decrease of PKCε inhibitory activity in submembranous sites. Thus, reorganization of actin and PKCε may establish conditions for mechano- and/or signal transduction-mediated activation of VSOACs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Hypotonic Activation of Volume-sensitive Outwardly Rectifying Anion Channels (VSOACs) Requires Coordinated Remodeling of Subcortical and Perinuclear Actin Filaments

Loading next page...
 
/lp/springer_journal/hypotonic-activation-of-volume-sensitive-outwardly-rectifying-anion-Np7Kqc0akc
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-0815-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial