Hypotonic Activation of Volume-sensitive Outwardly Rectifying Anion Channels (VSOACs) Requires Coordinated Remodeling of Subcortical and Perinuclear Actin Filaments

Hypotonic Activation of Volume-sensitive Outwardly Rectifying Anion Channels (VSOACs) Requires... Cell volume regulation requires activation of volume-sensitive outwardly rectifying anion channels (VSOACs). The actin cytoskeleton may participate in the activation of VSOACs but the roles of the two major actin pools remain undefined. We hypothesized that structural reorganization of both subcortical and perinuclear actin filaments (F-actin) contributes to the hypotonic activation of VSOACs. Hypotonic stress of pulmonary artery smooth muscle cells (PASMCs) was associated with reorganization of both peripheral and perinuclear F-actin, and with activation of VSOACs. Preincubation with cytochalasin D caused prominent dissociation of perinuclear, but not of subcortical F-actin. Cytochalasin D failed to induce isotonic activation and delayed the hypotonic activation of VSOACs. F-actin stabilization by phalloidin delayed both the hypotonic stress-induced dissociation of membrane-associated actin filaments and the activation kinetics of VSOACs. PKCε, which was proposed to phosphorylate and inhibit VSOACs, colocalized primarily with F-actin and the net kinase activity remained unchanged during hypotonic cell swelling. In conclusion, normal hypotonic activation of VSOACs requires disruption of peripheral F-actin but intact perinuclear F-actin; interference with this pattern of actin reorganization delays the activation kinetics of VSOACs. The cell swelling-induced peripheral actin dissociation may underlie the observed translocation of PKCε, which leads to a net decrease of PKCε inhibitory activity in submembranous sites. Thus, reorganization of actin and PKCε may establish conditions for mechano- and/or signal transduction-mediated activation of VSOACs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Hypotonic Activation of Volume-sensitive Outwardly Rectifying Anion Channels (VSOACs) Requires Coordinated Remodeling of Subcortical and Perinuclear Actin Filaments

Loading next page...
 
/lp/springer_journal/hypotonic-activation-of-volume-sensitive-outwardly-rectifying-anion-Np7Kqc0akc
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-0815-y
Publisher site
See Article on Publisher Site

Abstract

Cell volume regulation requires activation of volume-sensitive outwardly rectifying anion channels (VSOACs). The actin cytoskeleton may participate in the activation of VSOACs but the roles of the two major actin pools remain undefined. We hypothesized that structural reorganization of both subcortical and perinuclear actin filaments (F-actin) contributes to the hypotonic activation of VSOACs. Hypotonic stress of pulmonary artery smooth muscle cells (PASMCs) was associated with reorganization of both peripheral and perinuclear F-actin, and with activation of VSOACs. Preincubation with cytochalasin D caused prominent dissociation of perinuclear, but not of subcortical F-actin. Cytochalasin D failed to induce isotonic activation and delayed the hypotonic activation of VSOACs. F-actin stabilization by phalloidin delayed both the hypotonic stress-induced dissociation of membrane-associated actin filaments and the activation kinetics of VSOACs. PKCε, which was proposed to phosphorylate and inhibit VSOACs, colocalized primarily with F-actin and the net kinase activity remained unchanged during hypotonic cell swelling. In conclusion, normal hypotonic activation of VSOACs requires disruption of peripheral F-actin but intact perinuclear F-actin; interference with this pattern of actin reorganization delays the activation kinetics of VSOACs. The cell swelling-induced peripheral actin dissociation may underlie the observed translocation of PKCε, which leads to a net decrease of PKCε inhibitory activity in submembranous sites. Thus, reorganization of actin and PKCε may establish conditions for mechano- and/or signal transduction-mediated activation of VSOACs.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off