Hypersensitive response-related death

Hypersensitive response-related death The hypersensitive response (HR) of plants resistant to microbial pathogens involves a complex form of programmed cell death (PCD) that differs from developmental PCD in its consistent association with the induction of local and systemic defence responses. Hypersensitive cell death is commonly controlled by direct or indirect interactions between pathogen avirulence gene products and those of plant resistance genes and it can be the result of multiple signalling pathways. Ion fluxes and the generation of reactive oxygen species commonly precede cell death, but a direct involvement of the latter seems to vary with the plant-pathogen combination. Protein synthesis, an intact actin cytoskeleton and salicylic acid also seem necessary for cell death induction. Cytological studies suggest that the actual mode and sequence of dismantling the cell contents varies among plant-parasite systems although there may be a universal involvement of cysteine proteases. It seems likely that cell death within the HR acts more as a signal to the rest of the plant rather than as a direct defence mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Hypersensitive response-related death

Loading next page...
 
/lp/springer_journal/hypersensitive-response-related-death-oIS0XVfO3F
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1026592509060
Publisher site
See Article on Publisher Site

Abstract

The hypersensitive response (HR) of plants resistant to microbial pathogens involves a complex form of programmed cell death (PCD) that differs from developmental PCD in its consistent association with the induction of local and systemic defence responses. Hypersensitive cell death is commonly controlled by direct or indirect interactions between pathogen avirulence gene products and those of plant resistance genes and it can be the result of multiple signalling pathways. Ion fluxes and the generation of reactive oxygen species commonly precede cell death, but a direct involvement of the latter seems to vary with the plant-pathogen combination. Protein synthesis, an intact actin cytoskeleton and salicylic acid also seem necessary for cell death induction. Cytological studies suggest that the actual mode and sequence of dismantling the cell contents varies among plant-parasite systems although there may be a universal involvement of cysteine proteases. It seems likely that cell death within the HR acts more as a signal to the rest of the plant rather than as a direct defence mechanism.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off