Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling

Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling The ability to perform quantum error correction is a significant hurdle for scalable quantum information processing. A key requirement for multiple-round quantum error correction is the ability to dynamically extract entropy from ancilla qubits. Heat-bath algorithmic cooling is a method that uses quantum logic operations to move entropy from one subsystem to another and permits cooling of a spin qubit below the closed system (Shannon) bound. Gamma-irradiated, $$^{13}$$ 13 C-labeled malonic acid provides up to five spin qubits: one spin-half electron and four spin-half nuclei. The nuclei are strongly hyperfine-coupled to the electron and can be controlled either by exploiting the anisotropic part of the hyperfine interaction or by using pulsed electron nuclear double resonance techniques. The electron connects the nuclei to a heat-bath with a much colder effective temperature determined by the electron’s thermal spin polarization. By accurately determining the full spin Hamiltonian and performing realistic algorithmic simulations, we show that an experimental demonstration of heat-bath algorithmic cooling beyond the Shannon bound is feasible in both three-qubit and five-qubit variants of this spin system. Similar techniques could be useful for polarizing nuclei in molecular or crystalline systems that allow for non-equilibrium optical polarization of the electron spin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Loading next page...
 
/lp/springer_journal/hyperfine-spin-qubits-in-irradiated-malonic-acid-heat-bath-algorithmic-nkJz7Jtrt0
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-0985-1
Publisher site
See Article on Publisher Site

Abstract

The ability to perform quantum error correction is a significant hurdle for scalable quantum information processing. A key requirement for multiple-round quantum error correction is the ability to dynamically extract entropy from ancilla qubits. Heat-bath algorithmic cooling is a method that uses quantum logic operations to move entropy from one subsystem to another and permits cooling of a spin qubit below the closed system (Shannon) bound. Gamma-irradiated, $$^{13}$$ 13 C-labeled malonic acid provides up to five spin qubits: one spin-half electron and four spin-half nuclei. The nuclei are strongly hyperfine-coupled to the electron and can be controlled either by exploiting the anisotropic part of the hyperfine interaction or by using pulsed electron nuclear double resonance techniques. The electron connects the nuclei to a heat-bath with a much colder effective temperature determined by the electron’s thermal spin polarization. By accurately determining the full spin Hamiltonian and performing realistic algorithmic simulations, we show that an experimental demonstration of heat-bath algorithmic cooling beyond the Shannon bound is feasible in both three-qubit and five-qubit variants of this spin system. Similar techniques could be useful for polarizing nuclei in molecular or crystalline systems that allow for non-equilibrium optical polarization of the electron spin.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 21, 2015

References

  • State preservation by repetitive error detection in a superconducting quantum circuit
    Kelly, J; Barends, R; Fowler, AG; Megrant, A; Jeffrey, E; White, TC; Sank, D; Mutus, JY; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Hoi, IC; Neill, C; Omalley, PJJ; Quintana, C; Roushan, P; Vainsencher, A; Wenner, J; Cleland, AN; Martinis, JM

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off