Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U–Pb dating

Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron... Uranium–lead isotopes and trace elements of titanite from the Chengchao iron skarn deposit (Daye district, Eastern China), located along the contact zones between Triassic marine carbonates and an early Cretaceous intrusive complex consisting of granite and quartz diorite, were analyzed using laser ablation inductively coupled plasma mass spectrometry to provide temporal constraints on iron mineralization and to evaluate its potential as a reference material for titanite U–Pb geochronology. Titanite grains from mineralized endoskarn have simple growth zoning patterns, exhibit intergrowth with magnetite, diopside, K-feldspar, albite and actinolite, and typically contain abundant primary two-phase fluid inclusions. These paragenetic and textural features suggest that these titanite grains are of hydrothermal origin. Hydrothermal titanite is distinct from the magmatic variety from the ore-related granitic intrusion in that it contains unusually high concentrations of U (up to 2995 ppm), low levels of Th (12.5–453 ppm), and virtually no common Pb. The REE concentrations are much lower, as are the Th/U and Lu/Hf ratios. The hydrothermal titanite grains yield reproducible uncorrected U–Pb ages ranging from 129.7 ± 0.7 to 132.1 ± 2.7 Ma (2σ), with a weighted mean of 131.2 ± 0.2 Ma [mean standard weighted deviation (MSWD) = 1.7] that is interpreted as the timing of iron skarn mineralization. This age closely corresponds to the zircon U–Pb age of 130.9 ± 0.7 Ma (MSWD = 0.7) determined for the quartz diorite, and the U–Pb ages for zircon and titanite (130.1 ± 1.0 Ma and 131.3 ± 0.3 Ma) in the granite, confirming a close temporal and likely genetic relationship between granitic magmatism and iron mineralization. Different hydrothermal titanite grains have virtually identical uncorrected U–Pb ratios suggestive of negligible common Pb in the mineral. The homogeneous textures and U–Pb characteristics of Chengchao hydrothermal titanite suggest that the mineral might be a suitable internal reference material for U–Pb dating. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mineralogy and Petrology Springer Journals

Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U–Pb dating

Loading next page...
 
/lp/springer_journal/hydrothermal-titanite-from-the-chengchao-iron-skarn-deposit-temporal-BRQ5bv6dmQ
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Earth Sciences; Mineralogy; Inorganic Chemistry; Geochemistry
ISSN
0930-0708
eISSN
1438-1168
D.O.I.
10.1007/s00710-017-0517-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial