Hydrothermal synthesis of (Fe, N) co-doped TiO2 powders and their photocatalytic properties under visible light irradiation

Hydrothermal synthesis of (Fe, N) co-doped TiO2 powders and their photocatalytic properties under... (Fe, N) co-doped titanium dioxide powders have been prepared by a quick, low-temperature hydrothermal method using TiOSO4, CO(NH2)2, Fe(NO3)3, and CN3H5 · HCl as starting materials. The synthesized powders were characterized by XRD, TEM, BET, XPS, and UV–Vis spectroscopy. Experimental results show that the as-synthesized TiO2 powders are present as the anatase phase and that the N and Fe ions have been doped into the TiO2 lattice. The specific surface area of the powders is 167.8 m2/g by the BET method and the mean grain size is about 11 nm, calculated by Scherrer’s formula. UV–Vis absorption spectra show that the edge of the photon absorption has been red-shifted up to 605 nm. The doped titanium dioxide powders had excellent photocatalytic activity during the process of photo-degradation of formaldehyde and some TVOC gases under visible light irradiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Hydrothermal synthesis of (Fe, N) co-doped TiO2 powders and their photocatalytic properties under visible light irradiation

Loading next page...
 
/lp/springer_journal/hydrothermal-synthesis-of-fe-n-co-doped-tio2-powders-and-their-jacwqCGjlW
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science + Business Media BV
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-009-0025-9
Publisher site
See Article on Publisher Site

Abstract

(Fe, N) co-doped titanium dioxide powders have been prepared by a quick, low-temperature hydrothermal method using TiOSO4, CO(NH2)2, Fe(NO3)3, and CN3H5 · HCl as starting materials. The synthesized powders were characterized by XRD, TEM, BET, XPS, and UV–Vis spectroscopy. Experimental results show that the as-synthesized TiO2 powders are present as the anatase phase and that the N and Fe ions have been doped into the TiO2 lattice. The specific surface area of the powders is 167.8 m2/g by the BET method and the mean grain size is about 11 nm, calculated by Scherrer’s formula. UV–Vis absorption spectra show that the edge of the photon absorption has been red-shifted up to 605 nm. The doped titanium dioxide powders had excellent photocatalytic activity during the process of photo-degradation of formaldehyde and some TVOC gases under visible light irradiation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 6, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off