Hydrothermal synthesis, characterization, and photocatalytic performance of W-doped MoO3 nanobelts

Hydrothermal synthesis, characterization, and photocatalytic performance of W-doped MoO3 nanobelts Orthorhombic MoO3 and W-doped MoO3 nanobelts were successfully synthesized by a hydrothermal method. The effect of W dopant on the photocatalytic performance of W-doped MoO3 nanobelts was studied. The phase, morphology, and oxidation state of the products were characterized by X-ray diffraction analysis, Fourier-transform infrared and Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. In this research, MoO3 and W-doped MoO3 exhibited the same phase and morphology of orthorhombic nanobelts with growth along the [001] direction, including detection of Mo6+, O2−, and W6+ in the 3 mol% W-doped MoO3 sample. The photocatalytic performance of the as-synthesized MoO3 and W-doped MoO3 nanobelts was monitored through photodegradation of methylene blue (MB) under visible radiation. W-doped MoO3 nanobelts showed better photocatalytic performance than pure MoO3. The 3 mol% W-doped MoO3 photocatalyst exhibited very good visible-light-driven activity for photodegradation of MB, as high as 99 % within 60 min. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Hydrothermal synthesis, characterization, and photocatalytic performance of W-doped MoO3 nanobelts

Loading next page...
 
/lp/springer_journal/hydrothermal-synthesis-characterization-and-photocatalytic-performance-vDMoP3rDJG
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2548-1
Publisher site
See Article on Publisher Site

Abstract

Orthorhombic MoO3 and W-doped MoO3 nanobelts were successfully synthesized by a hydrothermal method. The effect of W dopant on the photocatalytic performance of W-doped MoO3 nanobelts was studied. The phase, morphology, and oxidation state of the products were characterized by X-ray diffraction analysis, Fourier-transform infrared and Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. In this research, MoO3 and W-doped MoO3 exhibited the same phase and morphology of orthorhombic nanobelts with growth along the [001] direction, including detection of Mo6+, O2−, and W6+ in the 3 mol% W-doped MoO3 sample. The photocatalytic performance of the as-synthesized MoO3 and W-doped MoO3 nanobelts was monitored through photodegradation of methylene blue (MB) under visible radiation. W-doped MoO3 nanobelts showed better photocatalytic performance than pure MoO3. The 3 mol% W-doped MoO3 photocatalyst exhibited very good visible-light-driven activity for photodegradation of MB, as high as 99 % within 60 min.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 21, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off