Hydrothermal solidification of municipal solid waste incineration fly ash

Hydrothermal solidification of municipal solid waste incineration fly ash Hydrothermal solidification of municipal solid waste incineration (MSWI) fly ash has been conducted under saturated steam pressure at 200 °C for up to 48 h with quartz addition. To enhance the strength of solidified specimens further, the raw fly ash was pre-treated by water-washing and mixed with NaOH solution (2 M) as reaction solvent. Experimental results showed that curing time and temperature had significant effects on strength development. Strength development was found to be mainly due to tobermorite formation, and addition of quartz and NaOH solution promoted tobermorite formation. The raw fly ash could also be used as an additive to solidify MSWI bottom ash, and with raw fly ash addition (10%) the flexural strength of solidified specimens reached more than 21 MPa, suggesting high potential to recycle 100% MSWI ash (e.g. as 10% fly ash + 90% bottom ash). Leaching tests were conducted to determine amounts of heavy metals dissolved from solidified specimens. The results showed that under the hydrothermal conditions of this study, leaching of heavy metals was very low. As such, the hydrothermal processing method might have high potential for recycling/reusing MSWI fly ash on a large scale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Hydrothermal solidification of municipal solid waste incineration fly ash

Loading next page...
 
/lp/springer_journal/hydrothermal-solidification-of-municipal-solid-waste-incineration-fly-mKmXXLGcRE
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0287-x
Publisher site
See Article on Publisher Site

Abstract

Hydrothermal solidification of municipal solid waste incineration (MSWI) fly ash has been conducted under saturated steam pressure at 200 °C for up to 48 h with quartz addition. To enhance the strength of solidified specimens further, the raw fly ash was pre-treated by water-washing and mixed with NaOH solution (2 M) as reaction solvent. Experimental results showed that curing time and temperature had significant effects on strength development. Strength development was found to be mainly due to tobermorite formation, and addition of quartz and NaOH solution promoted tobermorite formation. The raw fly ash could also be used as an additive to solidify MSWI bottom ash, and with raw fly ash addition (10%) the flexural strength of solidified specimens reached more than 21 MPa, suggesting high potential to recycle 100% MSWI ash (e.g. as 10% fly ash + 90% bottom ash). Leaching tests were conducted to determine amounts of heavy metals dissolved from solidified specimens. The results showed that under the hydrothermal conditions of this study, leaching of heavy metals was very low. As such, the hydrothermal processing method might have high potential for recycling/reusing MSWI fly ash on a large scale.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 2, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off