Hydrophobic recovery of atmospheric pressure plasma treated surfaces of Wood-Polymer Composites (WPC)

Hydrophobic recovery of atmospheric pressure plasma treated surfaces of Wood-Polymer Composites... In this study, the behavior of atmospheric pressure plasma treated surfaces of Wood-Polymer Composites (WPC) was investigated as a function of time and environmental conditions. The surfaces of injection molded WPC based on polypropylene (PP) and polyethylene (PE) were treated by a dielectric barrier discharge (DBD) and subsequently aged under various conditions. The wettability as an indicator for change of the composite surface was assessed using water contact angle. In addition, a calculation for half-time of the contact angles was developed to predict the time span which is needed for recovery of hydrophobicity. The results showed a major influence of temperature and time, whereas the humidity only at storing conditions of 60 °C and 75% relative humidity showed a distinct effect on the activated surface. The effect of DBD treatment was stable for more than one week in the climates 20 °C and 0% RH and 20 °C and 65% RH. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Wood and Wood Products Springer Journals

Hydrophobic recovery of atmospheric pressure plasma treated surfaces of Wood-Polymer Composites (WPC)

Loading next page...
 
/lp/springer_journal/hydrophobic-recovery-of-atmospheric-pressure-plasma-treated-surfaces-q6YW4GLZXg
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Wood Science & Technology; Ceramics, Glass, Composites, Natural Materials; Operating Procedures, Materials Treatment
ISSN
0018-3768
eISSN
1436-736X
D.O.I.
10.1007/s00107-017-1175-x
Publisher site
See Article on Publisher Site

Abstract

In this study, the behavior of atmospheric pressure plasma treated surfaces of Wood-Polymer Composites (WPC) was investigated as a function of time and environmental conditions. The surfaces of injection molded WPC based on polypropylene (PP) and polyethylene (PE) were treated by a dielectric barrier discharge (DBD) and subsequently aged under various conditions. The wettability as an indicator for change of the composite surface was assessed using water contact angle. In addition, a calculation for half-time of the contact angles was developed to predict the time span which is needed for recovery of hydrophobicity. The results showed a major influence of temperature and time, whereas the humidity only at storing conditions of 60 °C and 75% relative humidity showed a distinct effect on the activated surface. The effect of DBD treatment was stable for more than one week in the climates 20 °C and 0% RH and 20 °C and 65% RH.

Journal

European Journal of Wood and Wood ProductsSpringer Journals

Published: Mar 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off