Hydrology signal from GRACE gravity data in the Nelson River basin, Canada: a comparison of two approaches

Hydrology signal from GRACE gravity data in the Nelson River basin, Canada: a comparison of two... The Gravity Recovery and Climate Experiment (GRACE) satellite mission measures the combined gravity signal of several overlapping processes. A common approach to separate the hydrological signal in previous ice-covered regions is to apply numerical models to simulate the glacial isostatic adjustment (GIA) signals related to the vanished ice load and then remove them from the observed GRACE data. However, the results of this method are strongly affected by the uncertainties of the ice and viscosity models of GIA. To avoid this, Wang et al. (Nat Geosci 6(1):38–42, 2013. https://doi.org/10.1038/NGEO1652 ; Geodesy Geodyn 6(4):267–273, 2015) followed the theory of Wahr et al. (Geophys Res Lett 22(8):977–980, 1995) and isolated water storage changes from GRACE in North America and Scandinavia with the help of Global Positioning System (GPS) data. Lambert et al. (Postglacial rebound and total water storage variations in the Nelson River drainage basin: a gravity GPS Study, Geological Survey of Canada Open File, 7317, 2013a, Geophys Res Lett 40(23):6118–6122, https://doi.org/10.1002/2013GL057973 , 2013b) did a similar study for the Nelson River basin in North America but applying GPS and absolute gravity measurements. However, the results of the two studies in the Nelson River basin differ largely, especially for the magnitude of the hydrology signal which differs about 35%. Through detailed comparison and analysis of the input data, data post-processing techniques, methods and results of these two works, we find that the different GRACE data post-processing techniques may lead to this difference. Also the GRACE input has a larger effect on the hydrology signal amplitude than the GPS input in the Nelson River basin due to the relatively small uplift signal in this region. Meanwhile, the influence of the value of $$\alpha $$ α , which represents the ratio between GIA-induced uplift rate and GIA-induced gravity-rate-of-change (before the correction for surface uplift), is more obvious in areas with high vertical uplift, but is smaller in the Nelson River basin. From Gaussian filtering of simulated data, we found that the magnitude of the peak gravity signal value can decrease significantly after Gaussian filtering with large average radius filter, but the effect in the Nelson River basin is rather small. More work is needed to understand the effect of amplitude restoration in the post-processing of GRACE g-dot signal. However, it is encouraging to find that both the methodologies of Wang et al. (2013, 2015) and Lambert et al. (2013a, b) can produce very similar results if their inputs are the same. This means that their methodologies can be applied to study the hydrology in other areas that are also affected by GIA provided that the effects of post-processing of their inputs are under control.[Figure not available: see fulltext.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth, Planets and Space Springer Journals

Hydrology signal from GRACE gravity data in the Nelson River basin, Canada: a comparison of two approaches

Loading next page...
 
/lp/springer_journal/hydrology-signal-from-grace-gravity-data-in-the-nelson-river-basin-hi0e4zNsFt
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by The Author(s)
Subject
Earth Sciences; Earth Sciences, general; Geology; Geophysics/Geodesy
eISSN
1880-5981
D.O.I.
10.1186/s40623-018-0804-x
Publisher site
See Article on Publisher Site

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellite mission measures the combined gravity signal of several overlapping processes. A common approach to separate the hydrological signal in previous ice-covered regions is to apply numerical models to simulate the glacial isostatic adjustment (GIA) signals related to the vanished ice load and then remove them from the observed GRACE data. However, the results of this method are strongly affected by the uncertainties of the ice and viscosity models of GIA. To avoid this, Wang et al. (Nat Geosci 6(1):38–42, 2013. https://doi.org/10.1038/NGEO1652 ; Geodesy Geodyn 6(4):267–273, 2015) followed the theory of Wahr et al. (Geophys Res Lett 22(8):977–980, 1995) and isolated water storage changes from GRACE in North America and Scandinavia with the help of Global Positioning System (GPS) data. Lambert et al. (Postglacial rebound and total water storage variations in the Nelson River drainage basin: a gravity GPS Study, Geological Survey of Canada Open File, 7317, 2013a, Geophys Res Lett 40(23):6118–6122, https://doi.org/10.1002/2013GL057973 , 2013b) did a similar study for the Nelson River basin in North America but applying GPS and absolute gravity measurements. However, the results of the two studies in the Nelson River basin differ largely, especially for the magnitude of the hydrology signal which differs about 35%. Through detailed comparison and analysis of the input data, data post-processing techniques, methods and results of these two works, we find that the different GRACE data post-processing techniques may lead to this difference. Also the GRACE input has a larger effect on the hydrology signal amplitude than the GPS input in the Nelson River basin due to the relatively small uplift signal in this region. Meanwhile, the influence of the value of $$\alpha $$ α , which represents the ratio between GIA-induced uplift rate and GIA-induced gravity-rate-of-change (before the correction for surface uplift), is more obvious in areas with high vertical uplift, but is smaller in the Nelson River basin. From Gaussian filtering of simulated data, we found that the magnitude of the peak gravity signal value can decrease significantly after Gaussian filtering with large average radius filter, but the effect in the Nelson River basin is rather small. More work is needed to understand the effect of amplitude restoration in the post-processing of GRACE g-dot signal. However, it is encouraging to find that both the methodologies of Wang et al. (2013, 2015) and Lambert et al. (2013a, b) can produce very similar results if their inputs are the same. This means that their methodologies can be applied to study the hydrology in other areas that are also affected by GIA provided that the effects of post-processing of their inputs are under control.[Figure not available: see fulltext.]

Journal

Earth, Planets and SpaceSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial