Hydrogen transfer hydrogenation of nitrobenzene to aniline with Ru(acac)3 as the catalyst

Hydrogen transfer hydrogenation of nitrobenzene to aniline with Ru(acac)3 as the catalyst Tris(acetylacetonato)ruthenium(III)(Ru(acac)3) was synthesized with RuCl3·nH2O and acetylacetone as raw materials. The structure of Ru(acac)3 was identified by FI-IR, 1H NMR, 13C NMR, and elemental analysis. It was used in the catalytic hydrogen transfer hydrogenation of nitrobenzene with sodium formate as hydrogen donor. The effects of reaction conditions on the process, such as temperature, time, dosage of catalyst, and kinds of hydrogen donor, were investigated. The optimal reaction parameters were determined as follows: 80 °C, 4.0 h, the substrate nitrobenzene 20 mL, sodium formate 27.20 g, Ru(acac)3 0.96 g, the conversion of nitrobenzene is 100.0 %, the yield of aniline and the selectivity to aniline are 96.65 %. The reaction mechanism is proposed and analyzed. It exhibited excellent catalytic properties in the hydrogen transfer hydrogenation of nitrobenzene to aniline. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Hydrogen transfer hydrogenation of nitrobenzene to aniline with Ru(acac)3 as the catalyst

Loading next page...
 
/lp/springer_journal/hydrogen-transfer-hydrogenation-of-nitrobenzene-to-aniline-with-ru-YHEySVqXWM
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1155-7
Publisher site
See Article on Publisher Site

Abstract

Tris(acetylacetonato)ruthenium(III)(Ru(acac)3) was synthesized with RuCl3·nH2O and acetylacetone as raw materials. The structure of Ru(acac)3 was identified by FI-IR, 1H NMR, 13C NMR, and elemental analysis. It was used in the catalytic hydrogen transfer hydrogenation of nitrobenzene with sodium formate as hydrogen donor. The effects of reaction conditions on the process, such as temperature, time, dosage of catalyst, and kinds of hydrogen donor, were investigated. The optimal reaction parameters were determined as follows: 80 °C, 4.0 h, the substrate nitrobenzene 20 mL, sodium formate 27.20 g, Ru(acac)3 0.96 g, the conversion of nitrobenzene is 100.0 %, the yield of aniline and the selectivity to aniline are 96.65 %. The reaction mechanism is proposed and analyzed. It exhibited excellent catalytic properties in the hydrogen transfer hydrogenation of nitrobenzene to aniline.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 26, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off