Hydrogen sulfide promotes wheat seed germination under osmotic stress

Hydrogen sulfide promotes wheat seed germination under osmotic stress Effects of NaHS, H2S donor, on germination and antioxidant metabolism in wheat (Triticum aestivum L.) seeds under osmotic stress were investigated. With the enhancement of osmotic stress, which was mimicked by PEG-6000, the seed germination dropped gradually. NaHS treatment could promote wheat seed germination against osmotic stress in a dose-dependent manner; while Na+ and other sulfur-containing components, such as S2−, SO 4 2− , SO 3 2− , HSO 4 − and HSO 3 − , were not able to improve seed germination as NaHS did, confirming H2S or HS− derived from NaHS contribute to the protective roles. Further experiments showed that NaHS treatment combined with PEG enhanced the activities of amylase and esterase in comparison to PEG treatment alone. Alternatively, NaHS treatment significantly reduced malondialdehyde and hydrogen peroxide accumulation in seeds. Significant enhancement of catalase and ascorbate peroxidase activities and decrease in lipoxygenase activity were observed in NaHS treated seeds, while peroxidase and superoxide dismutase activities were not affected as compared with the control. Furthermore, the H2S donor treatment could retain higher levels of endogenous H2S in wheat seeds under osmotic stress. These data indicated that H2S played a protective role in wheat seed against osmotic stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Hydrogen sulfide promotes wheat seed germination under osmotic stress

Loading next page...
 
/lp/springer_journal/hydrogen-sulfide-promotes-wheat-seed-germination-under-osmotic-stress-ral6HW2O4Q
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710040114
Publisher site
See Article on Publisher Site

Abstract

Effects of NaHS, H2S donor, on germination and antioxidant metabolism in wheat (Triticum aestivum L.) seeds under osmotic stress were investigated. With the enhancement of osmotic stress, which was mimicked by PEG-6000, the seed germination dropped gradually. NaHS treatment could promote wheat seed germination against osmotic stress in a dose-dependent manner; while Na+ and other sulfur-containing components, such as S2−, SO 4 2− , SO 3 2− , HSO 4 − and HSO 3 − , were not able to improve seed germination as NaHS did, confirming H2S or HS− derived from NaHS contribute to the protective roles. Further experiments showed that NaHS treatment combined with PEG enhanced the activities of amylase and esterase in comparison to PEG treatment alone. Alternatively, NaHS treatment significantly reduced malondialdehyde and hydrogen peroxide accumulation in seeds. Significant enhancement of catalase and ascorbate peroxidase activities and decrease in lipoxygenase activity were observed in NaHS treated seeds, while peroxidase and superoxide dismutase activities were not affected as compared with the control. Furthermore, the H2S donor treatment could retain higher levels of endogenous H2S in wheat seeds under osmotic stress. These data indicated that H2S played a protective role in wheat seed against osmotic stress.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jul 7, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off