Hydrogen sulfide: A multifunctional gaseous molecule in plants

Hydrogen sulfide: A multifunctional gaseous molecule in plants Hydrogen sulfide (H2S), a gaseous transmitter, has long been considered as a phytotoxin, but nowadays as a small molecule with multiple functions fulfilled at low concentrations. H2S has many positive effects on plant growth, development, and the acquisition of plant stress tolerance. The focus of this review is to summarize the generation and properties of hydrogen sulfide and its potential physiological functions, including mediating stomatal movements; mediating the responses to abiotic stressors, such as heavy metals, salt, drought, and heating; involving in organogenesis and growth; regulating senescence; priming seed germination; and enhancing photosynthesis. Future prospects are also presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Hydrogen sulfide: A multifunctional gaseous molecule in plants

Loading next page...
 
/lp/springer_journal/hydrogen-sulfide-a-multifunctional-gaseous-molecule-in-plants-0VAiJT7WF6
Publisher
Springer US
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713060058
Publisher site
See Article on Publisher Site

Abstract

Hydrogen sulfide (H2S), a gaseous transmitter, has long been considered as a phytotoxin, but nowadays as a small molecule with multiple functions fulfilled at low concentrations. H2S has many positive effects on plant growth, development, and the acquisition of plant stress tolerance. The focus of this review is to summarize the generation and properties of hydrogen sulfide and its potential physiological functions, including mediating stomatal movements; mediating the responses to abiotic stressors, such as heavy metals, salt, drought, and heating; involving in organogenesis and growth; regulating senescence; priming seed germination; and enhancing photosynthesis. Future prospects are also presented.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off