Hydrogen bonding interaction between ureas or thioureas and nitro-compounds

Hydrogen bonding interaction between ureas or thioureas and nitro-compounds The hydrogen bonding interactions between ureas or thioureas and different nitro-compounds were studied using the MP2 method. After comparing four possible conformations, the most stable one was found, which has the typical hydrogen bonding feature of red-shift effect. Based on it, the substituent effects on both nitro-compounds and (thio) urea were researched. The results indicated that electron-withdrawing groups on ureas or thioureas and electron-donating groups on nitro-compounds can both facilitate the hydrogen bonding formation. The NBO analysis further disclosed the essence of the hydrogen bonding interaction. We also studied the cis–trans isomerization of the complexes of (thio) urea with nitroalkenes, which revealed that, for hydrogen-bonding complexes, it is necessary to take both cis and trans isomers into consideration, especially for nitroalkenes with little steric effect substituents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Hydrogen bonding interaction between ureas or thioureas and nitro-compounds

Loading next page...
 
/lp/springer_journal/hydrogen-bonding-interaction-between-ureas-or-thioureas-and-nitro-gZvbNqJkuF
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0230-6
Publisher site
See Article on Publisher Site

Abstract

The hydrogen bonding interactions between ureas or thioureas and different nitro-compounds were studied using the MP2 method. After comparing four possible conformations, the most stable one was found, which has the typical hydrogen bonding feature of red-shift effect. Based on it, the substituent effects on both nitro-compounds and (thio) urea were researched. The results indicated that electron-withdrawing groups on ureas or thioureas and electron-donating groups on nitro-compounds can both facilitate the hydrogen bonding formation. The NBO analysis further disclosed the essence of the hydrogen bonding interaction. We also studied the cis–trans isomerization of the complexes of (thio) urea with nitroalkenes, which revealed that, for hydrogen-bonding complexes, it is necessary to take both cis and trans isomers into consideration, especially for nitroalkenes with little steric effect substituents.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off