Hybridized estimations of support vector machine free parameters C and γ using a fuzzy learning strategy for microphone array-based speaker recognition in a Kinect sensor-deployed environment

Hybridized estimations of support vector machine free parameters C and γ using a fuzzy learning... The support vector machine (SVM) is a popular classification model for speaker verification. However, although SVM is suitable for classifying speakers, the uncertain values of the free parameters C and γ of the SVM model have been a challenging technique problem. An improper value set provided for the free parameter pair (C, γ) can cause dissatisfactory performance in the recognition accuracy of speaker verification. Moreover, the sound source localization information of the collected acoustic data has a large effect on the recognition performance of SVM speaker verification. In response, this study developed a sound source localization-driven fuzzy scheme to help determine the optimal value set of (C, γ) for the establishment of an SVM model. Specifically, this scheme adopts the estimated information of time difference of arrival (TDOA) derived from the Kinect microphone array (containing both the angle and distance information of the acoustic data of the speaker), to optimally calculate the value set of the SVM free parameters C and γ. It was demonstrated that speaker verification using the SVM with a properly estimated parameter pair (C, γ) is more accurate than that with only an arbitrarily given value set for the parameter pair (C, γ) on recognition rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Hybridized estimations of support vector machine free parameters C and γ using a fuzzy learning strategy for microphone array-based speaker recognition in a Kinect sensor-deployed environment

Loading next page...
 
/lp/springer_journal/hybridized-estimations-of-support-vector-machine-free-parameters-c-and-LXblu38F0z
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4499-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial