Hybrid setup for stable magnetic fields enabling robust quantum control

Hybrid setup for stable magnetic fields enabling robust quantum control Well controlled and highly stable magnetic fields are desired for a wide range of applications in physical research, including quantum metrology, sensing, information processing, and simulation. Here we introduce a low-cost hybrid assembly of rare-earth magnets and magnetic field coils to generate a field strength of $$\simeq $$ ≃ 10.9 mT with a calculated spatial variation of less than 10−6 within a diameter of spherical volume of 150 μm. We characterise its tuneability and stability performance using a single Mg+ atom confined in a radio-frequency surface-electrode trap under ultra-high vacuum conditions. The strength of the field can be tuned with a relative precision of ≤2 × 10−5 and we find a passive temporal stability of our setup of better than 1.0 × 10−4 over the course of one hour. Slow drifts on time scales of a few minutes are actively stabilised by adjusting electric currents in the magnetic field coils. In this way, we observe coherence times of electronic superposition states of greater than six seconds using a first-order field insensitive (clock) transition. In a first application, we demonstrate sensing of magnetic fields with amplitudes of ≥0.2 μT oscillating at $$\simeq $$ ≃ 2π × 60 MHz. Our approach can be implemented in compact and robust applications with strict power and load requirements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Hybrid setup for stable magnetic fields enabling robust quantum control

Loading next page...
 
/lp/springer_journal/hybrid-setup-for-stable-magnetic-fields-enabling-robust-quantum-C5FH1z0ugG
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-22671-5
Publisher site
See Article on Publisher Site

Abstract

Well controlled and highly stable magnetic fields are desired for a wide range of applications in physical research, including quantum metrology, sensing, information processing, and simulation. Here we introduce a low-cost hybrid assembly of rare-earth magnets and magnetic field coils to generate a field strength of $$\simeq $$ ≃ 10.9 mT with a calculated spatial variation of less than 10−6 within a diameter of spherical volume of 150 μm. We characterise its tuneability and stability performance using a single Mg+ atom confined in a radio-frequency surface-electrode trap under ultra-high vacuum conditions. The strength of the field can be tuned with a relative precision of ≤2 × 10−5 and we find a passive temporal stability of our setup of better than 1.0 × 10−4 over the course of one hour. Slow drifts on time scales of a few minutes are actively stabilised by adjusting electric currents in the magnetic field coils. In this way, we observe coherence times of electronic superposition states of greater than six seconds using a first-order field insensitive (clock) transition. In a first application, we demonstrate sensing of magnetic fields with amplitudes of ≥0.2 μT oscillating at $$\simeq $$ ≃ 2π × 60 MHz. Our approach can be implemented in compact and robust applications with strict power and load requirements.

Journal

Scientific ReportsSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off