Access the full text.
Sign up today, get DeepDyve free for 14 days.
There is growing interest in rendering scenes with many lights, where scenes typically contain hundreds to thousands of lights. Each light illuminates geometry within a finite extent called a light volume. A key aspect of performance is determining which lights apply to what geometry, and then applying those lights efficiently. We present a GPU-based approach using spatial data structures, binning lights by depth analytically while also taking advantage of hardware rasterization. This improves light binning performance by 3–6 $$\times $$ × . We also present a GPU memory and cache friendly data structure that takes two passes to build, giving 4–10 $$\times $$ × improved performance when applying lighting and an overall improvement of 1.3–4 $$\times $$ × for total frametime.
The Visual Computer – Springer Journals
Published: May 2, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.