Hybrid graph-based multicast traffic grooming in metro networks with quality-of-transmission considerations

Hybrid graph-based multicast traffic grooming in metro networks with quality-of-transmission... This paper investigates the problem of multicast traffic grooming in optical networks utilizing a novel grooming approach that is based on the routing/grooming of multicast calls on hybrid graphs (HGs). HGs are constructed dynamically upon the arrival of each multicast call, in such a way that they consist of both the available physical links and the logical links with available capacity. Several schemes were developed for the construction of the HGs, namely the minimum free capacity light-tree first, the maximum free capacity light-tree first, the maximum overlapping light-tree first, the least-used light-tree first, and the most-used light-tree first scheme. Also, a novel hybrid Steiner tree heuristic for routing/grooming on the HGs is presented. The proposed grooming approach exhibits improved performance in terms of blocking probability compared to existing multicast grooming approaches that route/groom multicast calls by considering physical and logical links separately. Furthermore, the physical layer impairments were also considered during the provisioning phase of the newly established light-trees on the HG, in which case the proposed schemes also exhibit improved performance compared to other grooming approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Hybrid graph-based multicast traffic grooming in metro networks with quality-of-transmission considerations

Loading next page...
 
/lp/springer_journal/hybrid-graph-based-multicast-traffic-grooming-in-metro-networks-with-ESfVmx0uTP
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0589-9
Publisher site
See Article on Publisher Site

Abstract

This paper investigates the problem of multicast traffic grooming in optical networks utilizing a novel grooming approach that is based on the routing/grooming of multicast calls on hybrid graphs (HGs). HGs are constructed dynamically upon the arrival of each multicast call, in such a way that they consist of both the available physical links and the logical links with available capacity. Several schemes were developed for the construction of the HGs, namely the minimum free capacity light-tree first, the maximum free capacity light-tree first, the maximum overlapping light-tree first, the least-used light-tree first, and the most-used light-tree first scheme. Also, a novel hybrid Steiner tree heuristic for routing/grooming on the HGs is presented. The proposed grooming approach exhibits improved performance in terms of blocking probability compared to existing multicast grooming approaches that route/groom multicast calls by considering physical and logical links separately. Furthermore, the physical layer impairments were also considered during the provisioning phase of the newly established light-trees on the HG, in which case the proposed schemes also exhibit improved performance compared to other grooming approaches.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jan 9, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off