Hybrid connectivity restoration in wireless sensor and actor networks

Hybrid connectivity restoration in wireless sensor and actor networks Wireless sensor and actor networks are becoming more and more popular in the recent years. Each WSAN consists of numerous sensors and a few actors working collaboratively to carry out specific tasks. Unfortunately, actors are prone to failure due to harsh deployment environments and constrained power, which may break network connectivity resulting in disjoint components. Thus, maintaining the connectivity among actors is especially important. This paper proposes hybrid connectivity restoration (HCR), which integrates proactive selection and reactive motion. An actor protectively selects a backup node through its one-hop neighbor table and informs the backup node to supervise its stage. Once it fails, the backup node moves to the best position to restore the connectivity of the failed node’s neighbors reactively. This triggers a local recovery process at the backup node, which is repeated until network connectivity is restored. In order to minimize travel distance, HCR selects the backup node which moves the shortest distance to restore connectivity. Furthermore, HCR opts to reduce the number of messages by just informing the failure to its backup node. The correctness and effectiveness of HCR are validated through both theoretical analysis and simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png EURASIP Journal on Wireless Communications and Networking Springer Journals

Hybrid connectivity restoration in wireless sensor and actor networks

Loading next page...
 
/lp/springer_journal/hybrid-connectivity-restoration-in-wireless-sensor-and-actor-networks-VD0laL0wzd
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Signal,Image and Speech Processing; Communications Engineering, Networks; Information Systems Applications (incl.Internet)
eISSN
1687-1499
D.O.I.
10.1186/s13638-017-0921-4
Publisher site
See Article on Publisher Site

Abstract

Wireless sensor and actor networks are becoming more and more popular in the recent years. Each WSAN consists of numerous sensors and a few actors working collaboratively to carry out specific tasks. Unfortunately, actors are prone to failure due to harsh deployment environments and constrained power, which may break network connectivity resulting in disjoint components. Thus, maintaining the connectivity among actors is especially important. This paper proposes hybrid connectivity restoration (HCR), which integrates proactive selection and reactive motion. An actor protectively selects a backup node through its one-hop neighbor table and informs the backup node to supervise its stage. Once it fails, the backup node moves to the best position to restore the connectivity of the failed node’s neighbors reactively. This triggers a local recovery process at the backup node, which is repeated until network connectivity is restored. In order to minimize travel distance, HCR selects the backup node which moves the shortest distance to restore connectivity. Furthermore, HCR opts to reduce the number of messages by just informing the failure to its backup node. The correctness and effectiveness of HCR are validated through both theoretical analysis and simulations.

Journal

EURASIP Journal on Wireless Communications and NetworkingSpringer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off