Hybrid Approach of Flux-Cored Root Pass with Subsequent Pass of Metal-Cored or Solid Wire in Multifiller Gas Metal Arc Welding

Hybrid Approach of Flux-Cored Root Pass with Subsequent Pass of Metal-Cored or Solid Wire in... In the present study, gas metal arc welding was applied to SA516 Gr70 carbon steel by hybrid root pass and filler pass, wherein the rest of the process parameters were kept as it is. Flux-cored filler wire is applied at the root pass, while the subsequent filler pass was applied by solid, metal-cored and flux-cored wires in order to form three different welded joints. Macro-graphic examination, microstructures, tensile testing, impact testing, bend testing, and hardness variations were carried out to evaluate the performance of the welds. The results show that the hybrid approach of multipass GMAW of flux-cored root pass–metal-cored filler pass has improved process performances by reducing an overall heat input and output current. Angular distortion was reported minimum at hybrid weld of flux-cored root pass–metal-cored filler pass that was reported as 1.72°. Minor improvement in tensile properties such as tensile strength and yield strength was reported for FS and FM welds relative to FF weld. Minor decrease in fracture to the elongation was reported for FS hybrid weld relative to FM and FF weld. Maximum tensile strength and yield strength of 568 MPa and 385.45 MPa were reported for FS weld, respectively. Impact toughness was observed maximum for the hybrid weld of flux-cored root pass–solid filler pass. Higher macro-hardness was reported at the weld of FF weld relative to FS and FM welds. Hybridization of filler wire of GMAW can enhance overall cost and time reduction, with acceptable properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metallography, Microstructure, and Analysis Springer Journals

Hybrid Approach of Flux-Cored Root Pass with Subsequent Pass of Metal-Cored or Solid Wire in Multifiller Gas Metal Arc Welding

Loading next page...
 
/lp/springer_journal/hybrid-approach-of-flux-cored-root-pass-with-subsequent-pass-of-metal-P2J7HJk1C7
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC and ASM International
Subject
Materials Science; Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology
ISSN
2192-9262
eISSN
2192-9270
D.O.I.
10.1007/s13632-017-0399-9
Publisher site
See Article on Publisher Site

Abstract

In the present study, gas metal arc welding was applied to SA516 Gr70 carbon steel by hybrid root pass and filler pass, wherein the rest of the process parameters were kept as it is. Flux-cored filler wire is applied at the root pass, while the subsequent filler pass was applied by solid, metal-cored and flux-cored wires in order to form three different welded joints. Macro-graphic examination, microstructures, tensile testing, impact testing, bend testing, and hardness variations were carried out to evaluate the performance of the welds. The results show that the hybrid approach of multipass GMAW of flux-cored root pass–metal-cored filler pass has improved process performances by reducing an overall heat input and output current. Angular distortion was reported minimum at hybrid weld of flux-cored root pass–metal-cored filler pass that was reported as 1.72°. Minor improvement in tensile properties such as tensile strength and yield strength was reported for FS and FM welds relative to FF weld. Minor decrease in fracture to the elongation was reported for FS hybrid weld relative to FM and FF weld. Maximum tensile strength and yield strength of 568 MPa and 385.45 MPa were reported for FS weld, respectively. Impact toughness was observed maximum for the hybrid weld of flux-cored root pass–solid filler pass. Higher macro-hardness was reported at the weld of FF weld relative to FS and FM welds. Hybridization of filler wire of GMAW can enhance overall cost and time reduction, with acceptable properties.

Journal

Metallography, Microstructure, and AnalysisSpringer Journals

Published: Oct 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off