Human navigation ability: Tests of the encoding-error model of path integration

Human navigation ability: Tests of the encoding-error model of path integration This paper tests the generality and implications of an “encoding-error” model (Fujita et al. 1993) of humans' ability to keep track of their position in space in the absence of visual cues (i.e., by nonvisual path integration). The model proposes that when people undergo nonvisually guided travel, they encode the distances and turns that they experience, and their errors reflect systematic inaccuracies in the encoding process. Thus when people try to return to the origin of travel, they base their response on mis-encoded values of the outbound distances and turns. The two experiments reported here addressed three issues related to the model: (i) whether path integration is context-dependent and if so, how rapidly it adapts to recently experienced distances and turns; (ii) whether effects of experience can be specifically attributed to changes in the encoding process, and if so, what changes; and (iii) whether the encoding process represents distances and turns in the individual paths without considering their spatial relationship to one another (i.e., an object-centered representation). Testing these issues allows us to evaluate and develop the model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Spatial Cognition and Computation Springer Journals

Human navigation ability: Tests of the encoding-error model of path integration

Loading next page...
 
/lp/springer_journal/human-navigation-ability-tests-of-the-encoding-error-model-of-path-8f6vExI0aR
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Psychology; Cognitive Psychology
ISSN
1387-5868
eISSN
1573-9252
D.O.I.
10.1023/A:1010061313300
Publisher site
See Article on Publisher Site

Abstract

This paper tests the generality and implications of an “encoding-error” model (Fujita et al. 1993) of humans' ability to keep track of their position in space in the absence of visual cues (i.e., by nonvisual path integration). The model proposes that when people undergo nonvisually guided travel, they encode the distances and turns that they experience, and their errors reflect systematic inaccuracies in the encoding process. Thus when people try to return to the origin of travel, they base their response on mis-encoded values of the outbound distances and turns. The two experiments reported here addressed three issues related to the model: (i) whether path integration is context-dependent and if so, how rapidly it adapts to recently experienced distances and turns; (ii) whether effects of experience can be specifically attributed to changes in the encoding process, and if so, what changes; and (iii) whether the encoding process represents distances and turns in the individual paths without considering their spatial relationship to one another (i.e., an object-centered representation). Testing these issues allows us to evaluate and develop the model.

Journal

Spatial Cognition and ComputationSpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off