Human fetal wound healing: a review of molecular and cellular aspects

Human fetal wound healing: a review of molecular and cellular aspects The physiological answer to after birth skin lesions is scarring, which compromises the function and the aesthetics of the injured area. However, fetuses in early gestation (24 weeks or less) respond to this damage with skin regeneration. To explain this difference, several factors are considered, such as increased production of collagen III in fetal fibroblasts and increased presence of this collagen in the skins of these fetuses. Increased hyaluronic acid in fetal matrix correlates with greater capacity for migration of fibroblasts in scarless repair. The fact that myofibroblasts in the wound appear only after the fetal stage of pregnancy which forms scars can also be correlated. Additionally, there is an increase in the amount of adhesion molecules in repair without scarring, which would multiply cell adhesion and migration. Lower levels of bTGF1 in fetal wound are correlated with reduced amounts of collagen I and may be the result of higher relative expression of bTGF3, which downregulates bTGF1. Amniotic fluid itself might be a stimulating factor to human skin’s fibroblasts proliferation through cytokines such as bFGF and PDGF. A hypoxic environment in the fetal wound, associated with increased presence of Dot cells in blood, is also observed, and both facts can be related to a difference in the repair of the skin. Distinct gene expression guides those different responses and may also help to elucidate fetal skin regeneration. When the mechanisms responsible for the absence of scars in wounded fetuses are enlightened, it will be a significant mark in the studies of wound cicatrization and its therapeutic applications shall be extremely valuable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Plastic Surgery Springer Journals

Human fetal wound healing: a review of molecular and cellular aspects

Loading next page...
 
/lp/springer_journal/human-fetal-wound-healing-a-review-of-molecular-and-cellular-aspects-Xk6OGzFERw
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Medicine & Public Health; Plastic Surgery
ISSN
0930-343X
eISSN
1435-0130
D.O.I.
10.1007/s00238-016-1201-y
Publisher site
See Article on Publisher Site

Abstract

The physiological answer to after birth skin lesions is scarring, which compromises the function and the aesthetics of the injured area. However, fetuses in early gestation (24 weeks or less) respond to this damage with skin regeneration. To explain this difference, several factors are considered, such as increased production of collagen III in fetal fibroblasts and increased presence of this collagen in the skins of these fetuses. Increased hyaluronic acid in fetal matrix correlates with greater capacity for migration of fibroblasts in scarless repair. The fact that myofibroblasts in the wound appear only after the fetal stage of pregnancy which forms scars can also be correlated. Additionally, there is an increase in the amount of adhesion molecules in repair without scarring, which would multiply cell adhesion and migration. Lower levels of bTGF1 in fetal wound are correlated with reduced amounts of collagen I and may be the result of higher relative expression of bTGF3, which downregulates bTGF1. Amniotic fluid itself might be a stimulating factor to human skin’s fibroblasts proliferation through cytokines such as bFGF and PDGF. A hypoxic environment in the fetal wound, associated with increased presence of Dot cells in blood, is also observed, and both facts can be related to a difference in the repair of the skin. Distinct gene expression guides those different responses and may also help to elucidate fetal skin regeneration. When the mechanisms responsible for the absence of scars in wounded fetuses are enlightened, it will be a significant mark in the studies of wound cicatrization and its therapeutic applications shall be extremely valuable.

Journal

European Journal of Plastic SurgerySpringer Journals

Published: Jun 2, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off