How working memory relates to children’s reading comprehension: the importance of domain-specificity in storage and processing

How working memory relates to children’s reading comprehension: the importance of... Working memory is considered a well-established predictor of individual variation in reading comprehension in children and adults. However, how storage and processing capacities of working memory in both the phonological and semantic domain relate to reading comprehension is still unclear. In the current study, we investigated the contribution of phonological and semantic storage, and phonological and semantic processing to reading comprehension in 123 Dutch children in fifth grade. We conducted regression and mediation analyses to find out to what extent variation in reading comprehension could be explained by storage and processing capacities in both the phonological and the semantic domain, while controlling for children’s decoding and vocabulary. The analyses included tasks that reflect storage only, and working memory tasks that assess processing in addition to storage. Regression analysis including only storage tasks as predictor measures, revealed semantic storage to be a better predictor of reading comprehension than phonological storage. Adding phonological and semantic working memory tasks as additional predictors to the model showed that semantic working memory explained individual variation in reading comprehension over and above all other memory measures. Additional mediation analysis made it clear that semantic storage contributed indirectly to reading comprehension via semantic working memory, indicating that semantic storage tapped by working memory, in addition to processing capacities, explains individual variation in reading comprehension. It can thus be concluded that semantic storage plays a more important role in children’s reading comprehension than previously thought. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reading and Writing Springer Journals

How working memory relates to children’s reading comprehension: the importance of domain-specificity in storage and processing

Loading next page...
 
/lp/springer_journal/how-working-memory-relates-to-children-s-reading-comprehension-the-7yoczZ4CfY
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by The Author(s)
Subject
Linguistics; Language and Literature; Psycholinguistics; Education, general; Neurology; Literacy
ISSN
0922-4777
eISSN
1573-0905
D.O.I.
10.1007/s11145-016-9665-5
Publisher site
See Article on Publisher Site

Abstract

Working memory is considered a well-established predictor of individual variation in reading comprehension in children and adults. However, how storage and processing capacities of working memory in both the phonological and semantic domain relate to reading comprehension is still unclear. In the current study, we investigated the contribution of phonological and semantic storage, and phonological and semantic processing to reading comprehension in 123 Dutch children in fifth grade. We conducted regression and mediation analyses to find out to what extent variation in reading comprehension could be explained by storage and processing capacities in both the phonological and the semantic domain, while controlling for children’s decoding and vocabulary. The analyses included tasks that reflect storage only, and working memory tasks that assess processing in addition to storage. Regression analysis including only storage tasks as predictor measures, revealed semantic storage to be a better predictor of reading comprehension than phonological storage. Adding phonological and semantic working memory tasks as additional predictors to the model showed that semantic working memory explained individual variation in reading comprehension over and above all other memory measures. Additional mediation analysis made it clear that semantic storage contributed indirectly to reading comprehension via semantic working memory, indicating that semantic storage tapped by working memory, in addition to processing capacities, explains individual variation in reading comprehension. It can thus be concluded that semantic storage plays a more important role in children’s reading comprehension than previously thought.

Journal

Reading and WritingSpringer Journals

Published: Jun 24, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off