How to get spatial resolution inside probe volumes of commercial 3D LDA systems

How to get spatial resolution inside probe volumes of commercial 3D LDA systems In laser Doppler anemometry (LDA) it is often the aim to determine the velocity profile for a given fluid flow. The spatial resolution of such velocity profiles is limited in principal by the size of the probe volume. The method of using time of flight data from two probe volumes allows improvements of the spatial resolution by at least one order of magnitude and measurements of small-scale velocity profiles inside the measuring volume along the optical axis of commercial available 3D anemometers without moving the probe. No change of the optical set-up is necessary. An increased spatial resolution helps to acquire more precise data in areas where the flow velocity changes rapidly as shown in the vicinity of the stagnation point of a cuboid. In the overlapping region of three measuring volumes a spatially resolved 3D velocity vector profile is obtained in the direction of the optical axis in near plane flow conditions. In plane laminar flows the probe volume is extended by a few millimetres. The limitation of the method to a plane flow is that it would require a two-component LDA in a very special off-axis arrangement, but this arrangement is available in most commercial 3D systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

How to get spatial resolution inside probe volumes of commercial 3D LDA systems

Loading next page...
 
/lp/springer_journal/how-to-get-spatial-resolution-inside-probe-volumes-of-commercial-3d-9n7qbrqPhs
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0688-8
Publisher site
See Article on Publisher Site

Abstract

In laser Doppler anemometry (LDA) it is often the aim to determine the velocity profile for a given fluid flow. The spatial resolution of such velocity profiles is limited in principal by the size of the probe volume. The method of using time of flight data from two probe volumes allows improvements of the spatial resolution by at least one order of magnitude and measurements of small-scale velocity profiles inside the measuring volume along the optical axis of commercial available 3D anemometers without moving the probe. No change of the optical set-up is necessary. An increased spatial resolution helps to acquire more precise data in areas where the flow velocity changes rapidly as shown in the vicinity of the stagnation point of a cuboid. In the overlapping region of three measuring volumes a spatially resolved 3D velocity vector profile is obtained in the direction of the optical axis in near plane flow conditions. In plane laminar flows the probe volume is extended by a few millimetres. The limitation of the method to a plane flow is that it would require a two-component LDA in a very special off-axis arrangement, but this arrangement is available in most commercial 3D systems.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 11, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off