How tapeworm infection and consumption of a Cd and Zn hyperaccumulating plant may affect Cu, Fe, and Mn concentrations in an animal—a plant consumer and tapeworm host

How tapeworm infection and consumption of a Cd and Zn hyperaccumulating plant may affect Cu, Fe,... This study evaluated the effects of a hyperaccumulator plant (Arabidopsis halleri), containing surplus of cadmium (Cd) and zinc (Zn) and being an admixture to the rat feed, on concentrations of copper (Cu), iron (Fe), and manganese (Mn) in the tissues of experimental rats infected/uninfected with the tapeworm (Hymenolepis diminuta). Male Wistar rats were divided into three groups (00, P0, and PT); the P0 and PT animals were fed a standard mixture for rats (ST-1) supplemented with the plant A. halleri at a weekly Zn and Cd dosage of 123 and 1 mg, respectively. Moreover, rats from the group PT were infected with the tapeworm. The group 00 served as control animals fed only ST-1 having no tapeworm infection. Rats were euthanized after 6 weeks, and Cu, Fe, and Mn levels were determined in rat and tapeworm tissues. The results indicated that both the consumption of hyperaccumulator plant and/or presence of tapeworms did have significant effect on Cu, Fe, and Mn concentrations in the host tissues. Concentrations of all the elements were higher in the rat liver and partially kidneys than in the tapeworms, and the concentrations of Cu, Fe, and Mn were affected by the consumption of Cd/Zn hyperaccumulator plants. Particularly, Fe concentrations in all rat tissues were significantly increased by consumption of A. halleri while decreased by the presence of tapeworms. Overall, the consumption of a Cd/Zn hyperaccumulator plant and tapeworm infection cause an imbalance in Cu, Fe, and Mn concentrations in the tissues of a consumer (experimental rats). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

How tapeworm infection and consumption of a Cd and Zn hyperaccumulating plant may affect Cu, Fe, and Mn concentrations in an animal—a plant consumer and tapeworm host

Loading next page...
 
/lp/springer_journal/how-tapeworm-infection-and-consumption-of-a-cd-and-zn-SAXVtEj3X1
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0787-3
Publisher site
See Article on Publisher Site

Abstract

This study evaluated the effects of a hyperaccumulator plant (Arabidopsis halleri), containing surplus of cadmium (Cd) and zinc (Zn) and being an admixture to the rat feed, on concentrations of copper (Cu), iron (Fe), and manganese (Mn) in the tissues of experimental rats infected/uninfected with the tapeworm (Hymenolepis diminuta). Male Wistar rats were divided into three groups (00, P0, and PT); the P0 and PT animals were fed a standard mixture for rats (ST-1) supplemented with the plant A. halleri at a weekly Zn and Cd dosage of 123 and 1 mg, respectively. Moreover, rats from the group PT were infected with the tapeworm. The group 00 served as control animals fed only ST-1 having no tapeworm infection. Rats were euthanized after 6 weeks, and Cu, Fe, and Mn levels were determined in rat and tapeworm tissues. The results indicated that both the consumption of hyperaccumulator plant and/or presence of tapeworms did have significant effect on Cu, Fe, and Mn concentrations in the host tissues. Concentrations of all the elements were higher in the rat liver and partially kidneys than in the tapeworms, and the concentrations of Cu, Fe, and Mn were affected by the consumption of Cd/Zn hyperaccumulator plants. Particularly, Fe concentrations in all rat tissues were significantly increased by consumption of A. halleri while decreased by the presence of tapeworms. Overall, the consumption of a Cd/Zn hyperaccumulator plant and tapeworm infection cause an imbalance in Cu, Fe, and Mn concentrations in the tissues of a consumer (experimental rats).

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Nov 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off