How sleep modes and traffic demands affect the energy efficiency in optical access networks

How sleep modes and traffic demands affect the energy efficiency in optical access networks An ever-increasing bandwidth demand is the main driver to investigate next-generation optical access (NGOA) networks. These networks, however, do not only have to comply with increasing data rates, but they should also meet the societal green agenda. As the access part consumes a major fraction of the energy consumption in today’s fiber-to-the-home-based telecommunication networks, the energy efficiency of NGOA networks should be an important design parameter. In this paper, we present a detailed evaluation of the energy consumption in different NGOA technologies. Furthermore, we analyze the effects of (1) introducing low power modes (e.g., sleep and doze modes) in the various NGOA technologies and (2) using optimal split ratios adjusted to the traffic demands so that the energy consumption is optimized for the desired quality of service level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

How sleep modes and traffic demands affect the energy efficiency in optical access networks

Loading next page...
 
/lp/springer_journal/how-sleep-modes-and-traffic-demands-affect-the-energy-efficiency-in-rhuQGIqVb5
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0504-4
Publisher site
See Article on Publisher Site

Abstract

An ever-increasing bandwidth demand is the main driver to investigate next-generation optical access (NGOA) networks. These networks, however, do not only have to comply with increasing data rates, but they should also meet the societal green agenda. As the access part consumes a major fraction of the energy consumption in today’s fiber-to-the-home-based telecommunication networks, the energy efficiency of NGOA networks should be an important design parameter. In this paper, we present a detailed evaluation of the energy consumption in different NGOA technologies. Furthermore, we analyze the effects of (1) introducing low power modes (e.g., sleep and doze modes) in the various NGOA technologies and (2) using optimal split ratios adjusted to the traffic demands so that the energy consumption is optimized for the desired quality of service level.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 4, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off