How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory

How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory Multiple imputation (MI) and full information maximum likelihood (FIML) are the two most common approaches to missing data analysis. In theory, MI and FIML are equivalent when identical models are tested using the same variables, and when m, the number of imputations performed with MI, approaches infinity. However, it is important to know how many imputations are necessary before MI and FIML are sufficiently equivalent in ways that are important to prevention scientists. MI theory suggests that small values of m, even on the order of three to five imputations, yield excellent results. Previous guidelines for sufficient m are based on relative efficiency, which involves the fraction of missing information (γ) for the parameter being estimated, and m. In the present study, we used a Monte Carlo simulation to test MI models across several scenarios in which γ and m were varied. Standard errors and p-values for the regression coefficient of interest varied as a function of m, but not at the same rate as relative efficiency. Most importantly, statistical power for small effect sizes diminished as m became smaller, and the rate of this power falloff was much greater than predicted by changes in relative efficiency. Based our findings, we recommend that researchers using MI should perform many more imputations than previously considered sufficient. These recommendations are based on γ, and take into consideration one’s tolerance for a preventable power falloff (compared to FIML) due to using too few imputations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Prevention Science Springer Journals

How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory

Loading next page...
 
/lp/springer_journal/how-many-imputations-are-really-needed-some-practical-clarifications-HrCyZkbwaW
Publisher
Springer Journals
Copyright
Copyright © 2007 by Society of Prevention Research
Subject
Medicine & Public Health; Public Health; Health Psychology; Child and School Psychology
ISSN
1389-4986
eISSN
1573-6695
D.O.I.
10.1007/s11121-007-0070-9
Publisher site
See Article on Publisher Site

Abstract

Multiple imputation (MI) and full information maximum likelihood (FIML) are the two most common approaches to missing data analysis. In theory, MI and FIML are equivalent when identical models are tested using the same variables, and when m, the number of imputations performed with MI, approaches infinity. However, it is important to know how many imputations are necessary before MI and FIML are sufficiently equivalent in ways that are important to prevention scientists. MI theory suggests that small values of m, even on the order of three to five imputations, yield excellent results. Previous guidelines for sufficient m are based on relative efficiency, which involves the fraction of missing information (γ) for the parameter being estimated, and m. In the present study, we used a Monte Carlo simulation to test MI models across several scenarios in which γ and m were varied. Standard errors and p-values for the regression coefficient of interest varied as a function of m, but not at the same rate as relative efficiency. Most importantly, statistical power for small effect sizes diminished as m became smaller, and the rate of this power falloff was much greater than predicted by changes in relative efficiency. Based our findings, we recommend that researchers using MI should perform many more imputations than previously considered sufficient. These recommendations are based on γ, and take into consideration one’s tolerance for a preventable power falloff (compared to FIML) due to using too few imputations.

Journal

Prevention ScienceSpringer Journals

Published: Jun 5, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off