How good are methods with memory for the solution of nonlinear equations?

How good are methods with memory for the solution of nonlinear equations? Multipoint methods for the solution of a single nonlinear equation allow higher order of convergence without requiring higher derivatives. Such methods have an order barrier as conjectured by Kung and Traub. To overcome this barrier, one constructs multipoint methods with memory, i.e. use previously computed iterates. We compare multipoint methods with memory to the best methods without memory and show that the use of memory is computationally more expensive and the methods are not competitive. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png SeMA Journal Springer Journals

How good are methods with memory for the solution of nonlinear equations?

Loading next page...
 
/lp/springer_journal/how-good-are-methods-with-memory-for-the-solution-of-nonlinear-ePxVy89y2c
Publisher
Springer Milan
Copyright
Copyright © 2017 by Sociedad Española de Matemática Aplicada (outside the USA)
Subject
Mathematics; Mathematics, general; Applications of Mathematics
ISSN
2254-3902
eISSN
2281-7875
D.O.I.
10.1007/s40324-016-0105-x
Publisher site
See Article on Publisher Site

Abstract

Multipoint methods for the solution of a single nonlinear equation allow higher order of convergence without requiring higher derivatives. Such methods have an order barrier as conjectured by Kung and Traub. To overcome this barrier, one constructs multipoint methods with memory, i.e. use previously computed iterates. We compare multipoint methods with memory to the best methods without memory and show that the use of memory is computationally more expensive and the methods are not competitive.

Journal

SeMA JournalSpringer Journals

Published: Jan 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off