Housing Price Dynamics in Time and Space: Predictability, Liquidity and Investor Returns

Housing Price Dynamics in Time and Space: Predictability, Liquidity and Investor Returns It is widely accepted that aggregate housing prices are predictable, but that excess returns to investors are precluded by the transactions costs of buying and selling property. We examine this issue using a unique data set—all private condominium transactions in Singapore during an eleven-year period. We model directly the price discovery process for individual dwellings. Our empirical results clearly reject a random walk in prices, supporting mean reversion in housing prices and diffusion of innovations over space. We find that, when house prices and aggregate returns are computed from models that erroneously assume a random walk and spatial independence, they are strongly autocorrelated. However, when they are calculated from the appropriate model, predictability in prices and in investment returns is completely absent. We show that this is due to the illiquid nature of housing transactions. We also conduct extensive simulations, over different time horizons and with different investment rules, testing whether better information on housing price dynamics leads to superior investment performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Housing Price Dynamics in Time and Space: Predictability, Liquidity and Investor Returns

Loading next page...
 
/lp/springer_journal/housing-price-dynamics-in-time-and-space-predictability-liquidity-and-uYuhzqhgb0
Publisher
Springer US
Copyright
Copyright © 2009 by The Author(s)
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1007/s11146-009-9207-x
Publisher site
See Article on Publisher Site

Abstract

It is widely accepted that aggregate housing prices are predictable, but that excess returns to investors are precluded by the transactions costs of buying and selling property. We examine this issue using a unique data set—all private condominium transactions in Singapore during an eleven-year period. We model directly the price discovery process for individual dwellings. Our empirical results clearly reject a random walk in prices, supporting mean reversion in housing prices and diffusion of innovations over space. We find that, when house prices and aggregate returns are computed from models that erroneously assume a random walk and spatial independence, they are strongly autocorrelated. However, when they are calculated from the appropriate model, predictability in prices and in investment returns is completely absent. We show that this is due to the illiquid nature of housing transactions. We also conduct extensive simulations, over different time horizons and with different investment rules, testing whether better information on housing price dynamics leads to superior investment performance.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Nov 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off