Hot compressive deformation behavior and electron backscattering diffraction analysis of Mg95.50Zn3.71Y0.79 fine-grained alloy solidified under high pressure

Hot compressive deformation behavior and electron backscattering diffraction analysis of... An Mg95.50Zn3.71Y0.79 fine-grained solidified alloy with a grain size of 16 μm was prepared by high-pressure solidification. The microstructure characteristics and hot compressive deformation behavior of the alloy solidified under high pressure were compared with the atmospheric-pressure solidified alloy by carrying out the unilateral compression tests under a strain rate in the range of 0.001–1.0 s−1 and at a deformation temperature in the range of 523–573 K. The true stress-true strain curve of the high-pressure solidified alloy shows the typical dynamic recrystallization rheological curve. EBSD results show that when the deformation was carried out at 573 K, nearly 90% dynamic recrystallization occurred in the high-pressure solidified alloy, and the newly formed grains were distortionless and had low dislocation density. The high-pressure solidified alloy showed a double-peak basal texture at a strain rate of 1.0 s−1. The two peak points showed a maximum pole density of 9.88 and 7.91, less than that in atmospheric-pressure alloy. When the deformation was carried out at the following conditions: deformation temperature = 573 K, strain rate = 0.001, and true strain = 0.9, the average Schmid factor (SF) for basal slip of the grains in the high-pressure solidified alloy was 0.419, and SF value for basal slip in 91% grains was greater than 0.3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Hot compressive deformation behavior and electron backscattering diffraction analysis of Mg95.50Zn3.71Y0.79 fine-grained alloy solidified under high pressure

Loading next page...
 
/lp/springer_journal/hot-compressive-deformation-behavior-and-electron-backscattering-8n19CsfgSH
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1698-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial